
Partial Results for Online Query Processing
Vijayshankar Raman∗

IBM Almaden Research Center
650 Harry Road, San Jose, CA 95136

ravijay@us.ibm.com

Joseph M. Hellerstein
University of California, Berkeley

387 Soda Hall #1776, Berkeley, CA 94720

jmh@cs.berkeley.edu

ABSTRACT
Traditional query processors generate full, accurate query
results, either in batch or in pipelined fashion. We argue
that this strict model is too rigid for exploratory queries over
diverse and distributed data sources, such as sources on the
Internet. Instead, we propose a looser model of querying in
which a user submits a broad initial query outline, and the
system continually generates partial result tuples that may
contain values for only some of the output fields. The user
can watch these partial results accumulate at the user in-
terface, and accordingly refine the query by specifying their
interest in different kinds of partial results.

After describing our querying model and user interface, we
present a query processing architecture for this model which
is implemented in the Telegraph dataflow system. Our archi-
tecture is designed to generate partial results quickly, and
to adapt query execution to changing user interests. The
crux of this architecture is a dataflow operator that sup-
ports two kinds of reorderings: reordering of intermediate
tuples within a dataflow, and reordering of query plan oper-
ators through which tuples flow. We study reordering poli-
cies that optimize for the quality of partial results delivered
over time, and experimentally demonstrate the benefits of
our architecture in this context.

1. INTRODUCTION
A frustrating aspect of the traditional database user expe-

rience is the lack of interactivity during long-running tasks.
It has often been noted that information seekers follow an
exploratory, iterative process involving multiple query at-
tempts [3, 20], and that early feedback during query execu-
tion can help speed up the process. Recently, a variety of
work on online processing (e.g., [13, 24, 1]) has attempted
to address this problem by providing incremental, refining
results during time-consuming tasks. An additional focus
has been to support a user’s exploratory querying by let-
ting them control and refine ongoing queries based on their
incremental view of the results [13, 23, 26].

This prior work is based on the idea of letting tuples
stream through operators in a dataflow query plan, so that
initial output rows – or statistical estimators based on initial
rows – can be quickly delivered. An underlying assumption
is that output rows can be generated at a reasonable rate,
and that a selection of the output forms the basis for partial

∗Work done while the author was a student at the University of
California, Berkeley.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGMOD ’2002 June 4-6, Madison, Wisconsin, USA
Copyright 2002 ACM 1-58113-497-5/02/06 ...$5.00.

results. These assumptions break down in newer federated
and Internet-based query environments, that are targeted by
the Telegraph dataflow engine [25] and other systems that
support queries over remote data sources (e.g., [14, 19]). In
these environments, different data sources of varying perfor-
mance can be joined in a single query, and the production
of a single complete output row may be blocked by delays
or rate mismatches across sources. In such scenarios, use-
ful results from fast sources could still be made available
to a user, based on projections of the eventual output rows.
In general, a mixture of projected and selected output tu-
ples could be of interest to the user over time – the user
could perceive the output table materializing one cell at a
time, rather than the more restricted row-at-a-time experi-
ence provided by earlier work. As we will see in this paper,
it is possible to produce meaningful partial results much
more efficiently and robustly than the row-at-a-time model
previously studied. It is also possible to give a user cor-
respondingly fine-grained control over the priority of both
“horizontal” and “vertical” partial results. The combina-
tion of this enhanced feedback and control can considerably
enhance the interactivity of query processing, especially in
unpredictable, networked query processing environments.

As an example, we consider a query over three websites:
the Federal Election Commission’s data on donors to the
2000 election campaign (FEC), Demographic data from Ya-
hoo (Yahoo), and crime statistics by zip code from APB-
news.com (Crime).

select F.name, F.State, F.contribution,
Y.householdIncome, C.crimeRating

from FEC as F, Yahoo as Y, Crime as C
where F.zip = Y.zip and F.zip = C.zip

In response, Telegraph fetches donor records from FEC, and
for each record probes Yahoo and Crime for matches. If
Crime is not responding quickly, Telegraph can still output
useful information from the other sites: donor names, states,
contributions and household incomes. Such partial results
can be quite useful – they may help the user decide whether
the query as posed is worth pursuing, they may help the
user guide the system to produce more interesting partial
results more quickly, or they may help the user compose a
related or contrasting query. But many questions arise:

1. Partial result semantics: If we display a partial result
to the user, what can they assume about the final result?

2. Rendezvous of early and late results: How do the
query engine and the client ensure that late-arriving at-
tribute values are correctly displayed in the appropriate
rows? In our example, if the Crime source subsequently
starts returning matches to previous FEC tuples, how
are these matches handled?

3. Production of partial results: How do we design
a query engine that can generate partial results? Can
this engine deal with the volatile nature of distributed
sources?

4. User control: To what extent can the user direct the
system to prioritize the delivery of specific rows, columns,
or even cells in the output?

5. Performance metrics and optimization: How do
we quantify the performance of such a query model, and
how do we optimize queries for such metrics?

In this paper, we address these questions in the context of
the Telegraph dataflow engine [25]. The crux of our ar-
chitecture is an integrated operator that combines two dis-
tinct forms of adaptive reordering from prior work. We use
the juggle operator from [23] to reorder intermediate tuples
within a dataflow, and we use the Eddy idea from [2] to
reorder the query plan operators through which the tuples
flow. We demonstrate that a tight integration of these two
techniques – combined with a modest restructuring of the
design of our query engine and client – can provide substan-
tial improvement under metrics for online performance.

Roadmap: We begin with some background on Telegraph
in Section 2. Then in Section 3 we formalize the notion
of a partial result, and discuss how a client program can
accumulate the continually arriving partial results to form
the complete result. We next describe how user actions at
the user interface are mapped onto preferences for different
kinds of partial results in Section 4. In Section 5 we present
a query processor architecture that is designed for partial
result tuple generation. We then experimentally evaluate
this architecture in Section 6. Finally, we discuss related
work and conclude (Sections 7 and 8).

2. BACKGROUND
The work presented here was motivated by our experi-

ence using Telegraph to support structured queries over Web
sources. In this section we describe this experience, and use
it to motivate the need for giving partial results.

2.1 Telegraph FFF
Telegraph is an adaptive dataflow system for managing

streams of networked data [25]. The first application we
built with Telegraph is a query engine called Federated Facts
and Figures (FFF) for composing data from Web data sources
and local files. The Web sources comprise not only web sites
that allow direct download of data, but also also those that
have complex form-based interfaces (the so called “Deep
Web” or “Hidden Web”, which is not currently indexed by
search engines [21, 16]). Like other heterogeneous databases,
we model such web sites as tables that can be accessed only
by binding in values for particular fields (e.g., [11]). FFF
uses the Telegraph Screen Scraper (TeSS) [25] as a gateway
to traverse and fetch data from the web site, and parse it
into a tuple format. As an example application of FFF, Fig-
ure 1 shows a Java client running an aggregate query over
the three Web data sources mentioned in the introduction.

Our initial prototype of Telegraph FFF combined and
broke down information about the 2000 United States pres-
idential election: campaign donations, personal and corpo-
rate information about the donors, information about neigh-
borhood crime rates, matches to lists of celebrities, and so
on. The resulting demo was placed live on the Web, and
was accompanied by press coverage, discussion with staff
at the presidential campaigns, and other public activities.
Thousands of users tried the demo in the month before the
election. Our experience with the prototype drove the work

described in this paper, and this scenario forms the basis for
the experimental results we report in Section 6.

2.2 The Need for Partial Results
Partial result generation is motivated by two properties

of queries over such distributed data sources: diverse and
volatile performance of distributed data sources, and the
inherently imprecise nature of exploratory querying.

2.2.1 Diversity and Volatility of Distributed Data Sources
Web-based data sources, unlike tables in centralized databases,

are autonomously maintained, widely shared, and accessed
across wide-area networks (WANs). This results in signif-
icant diversity of performance across sources, and unpre-
dictability of performance per source. The heterogeneity
and volatility of Internet performance is well known, as is
the bursty nature of Web server loads. These problems are
especially bad for “deep Web” data sources, since perfor-
mance enhancements like “edge” caching are not available
for dynamically generated data.

With multiple Web sources running at different rates, a
query engine that outputs full result tuples is limited by
the slowest of the sources in a query, even if that source
is of limited importance. Moreover, if one source becomes
unavailable or is delayed, result tuple generation can stall
completely. We saw both of these problems in our ini-
tial Telegraph FFF implementation for the 2000 presidential
election: some of our data sources were reliable commercial
servers, while others were governmental servers and small
companies, which exhibited less predictable performance.
Such problems can be sidestepped by delivering data from
faster sources to the user without waiting for slower sources.
Note that volatility means that the relative order of server
speed can change even within the execution of a query.

2.2.2 Imprecision of Exploratory Web Queries
Query specification over the Web is a much different prob-

lem from that over traditional databases, because the data
sources are much more numerous and diverse, and are au-
tonomously created and maintained. Relative to traditional
decision-support environments, a Web user is far less likely
to understand either the content or schemas of the sources,
and is especially unlikely to know about the semantic rela-
tionships between sources.

As a result, public interfaces for Internet query processors
typically allow queries to be specified imprecisely. In the
FFF demo we provided a set of broad, canned queries that
we believed would satisfy a large number of users. The Nia-
gara Internet Query System [19] suggests an interface where
sources in a query are automatically generated by looking
up user-specified keywords in a catalog of all sources. The
cooperative database literature has long argued for looser
modes of query specification (e.g., [28, 18, 7]) where the
system aids the user in specifying queries. For example,
the CoBase project [28] automatically adds other relevant
sources to a query even if the user has not asked for them.
A common denominator among these approaches is a broad,
generalist approach to query specification.

Such query imprecision makes the performance problems
of full result tuple generation especially egregious, because
the user may not care equally for all the output columns.
The delayed sources may augment the result with attributes
that the user does not care very much about; or the user

QUERY: select Avg(F.contribution), Avg(Y.householdIncome), F.State, C.crimeRating
from FEC as F, Yahoo as Y, Crime as C
where F.zip=Y.zip and F.zip=C.zip cube by F.state, C.crimeRating

Figure 1: Intermediate results displayed on a client interface for a query about election campaign contributions

may care for results from slow sources only for some rows.
E.g., our first example query analyzed political campaign
contributors along five attributes, but a given user may only
be interested in one or two of these attributes. Likewise each
user may want only results matching specific predicates of
interest to them. If the results of this query were cubed by
the contributors’ states of residence, and crime levels around
their residence (Figure 1), one user may want drill-downs by
Crime ratings for their state of residence only, and another
user might not be interested in the drill-down at all.

2.3 Partial Result Generation and Dynamic Query
Refinement

The above problems seriously constrain the interactivity
of any query processor that produces only full result tuples.
In this paper we tackle these problems though a looser model
of querying that is based on user-controllable generation of
partial result tuples.

Users specify an initial query, and the query processor con-
tinually returns partial result tuples, as shown in Figure 2.
As a concrete example, we consider a client program that
gradually accumulates these partial result tuples to form
the complete query result, and also displays intermediate
results to the user on a multi-resolution (roll-up/drill-down)
spreadsheet interface (Figure 1). These intermediate results
are typically sorted by some column, and users can explore
the results by scrolling. The results are also typically ag-
gregated and grouped by one or more columns, and users
can dynamically drill down or roll up this group by hi-
erarchy. Therefore different rows in the spreadsheet could
correspond to results at different resolutions, with different
detail columns being displayed on screen for different rows.
For example, in Figure 1, the crime ratings are shown only
for the contributors from California.

While the query is running, the user navigates through
the intermediate results at the user interface. These naviga-
tional actions can be used to infer the user’s interests, which
are translated into refinements to the query processor. For
example, in Figure 1, the results are sorted by state, the user
is scrolling over the contributions from Arizona and Califor-
nia, and has drilled down into California to see contributions
broken down by each neighborhood crime rating. The client
tool can infer that the user cares most about Arizona and
California, and that they care about the crime ratings for
California contributors alone. Accordingly, the client can in-
form the server to adapt its processing so that the updating

of the house price aggregate is prioritized for contributors
from these two states, and the crime rating calculation is
prioritized for the California contributors alone.

3. SEMANTICS OF PARTIAL RESULTS
An unusual aspect of our system is that the client must

handle partial query results. This introduces some com-
plexities in the handling of query results that do not arise
in traditional DBMSs. Our client must accept incomplete
(partial) result tuples generated by the query processor, and
continually “compose” them to form the complete query re-
sult. At the same time, the client must display a continually
updated spreadsheet interface, filling up the table cells over
time. This architecture is outlined in the schematic of Fig-
ure 2. In this section we first formalize the notions of partial
result tuples and intermediate results. We then discuss what
these definitions imply for the query processor (Section 3.2),
and how a client interface can compose partial result tuples
into intermediate results (Section 3.3).

3.1 Partial Result Tuples and Intermediate Results
So far, we have been vague in our description of partial

results and related terms. We now formalize these ideas.
We introduce a special attribute value Deferred, which is
included in every type, and indicates that an attribute value
will be delivered by the server at a later time in this query’s
processing. Deferred is a special kind of NULL. However,
Deferred is only used for server-client communication, and
does not cause the problems associated with multiple NULL
values in the database or query language [10].

Definition 1. A tuple r = (r1, . . . , rn) is a subtuple of a
tuple t = (t1, . . . tn), if for all 1 ≤ i ≤ n, either ri = ti, or
ri = Deferred. An approximate subtuple s of a tuple t is a
subtuple of t, with the exception that for aggregate output
columns, values in s can be estimates of the corresponding
values in t.

Approximate subtuples are needed for giving estimates as
in online aggregation [13]. Ideally such estimates are pro-
duced over random samples of the data, and are accompa-
nied by robust confidence intervals. Statistical robustness
can be hard to guarantee over Web sources, but users often
find “quick and dirty” estimates useful nonetheless.

Definition 2. For a query with result set QR, a partial
result tuple is an approximate subtuple of any tuple in QR.

Query Processor (5)

Eddy

SR

 Client (3.3) initial query

partial result tuples
 (Section 3.1)

query refinements
 (Section 4)

compose into

intermediate results

S
p

re
ad

sh
ee

t
d

is
pl

ay

Figure 2: Data and control flow in our partial result generation architecture.
Each component is explained in the section given in parentheses

R

Client

S
T

Figure 3: Partial results being output
in a statically chosen query plan

An intermediate result is a set I of tuples {i1, i2, . . . in}, such
that there exists a one-to-one mapping f : I → QR, where
∀ 1 ≤ u ≤ n, iu is an approximate subtuple of f(iu).

In other words, an intermediate result is a set of subtuples of
the query result tuples, with each subtuple associated with
a distinct query result tuple. This distinctness condition is
important, since it ensures that each tuple can be displayed
independently – in a separate row on screen – by a client
program. Without this condition, the client program cannot
determine whether a pair of tuples in the intermediate result
must be displayed on the same row or on different rows.
Since query results are typically displayed using a tabular
interface (such as Figure 1), we will henceforth refer to the
tuples in the intermediate result as rows.

3.2 Implications for the Query Processor
Though the above definitions may appear to be natural,

they have carefully been chosen to be quite conservative,
and have important implications for the query processor.

Query processing is typically implemented as a dataflow,
with intermediate tuples going through join and selection
operators to accumulate columns from all the tables involved
in the query and verify whether they pass all query predi-
cates. A natural way of generating partial result tuples in
this scheme is to apply the expressions in the query’s select
clause on the intermediate tuples (we describe this process
in detail in Section 5) flowing inside the query processor,
and pass the results to a client.

However, our definition of partial result tuples requires the
query processor to verify that a certain intermediate tuple
will find matches when it passes through every join opera-
tor, and will pass all the selection operators, before it can be
used to produce a partial result. Some of these joins might
involve slow data sources, and could delay partial result gen-
eration. Fortunately, two factors alleviate this problem, and
provide the query processor with advance knowledge that
an intermediate tuple will find matches when joined with a
source, even without actually performing the join.
Outerjoin semantics: In general, outerjoin semantics are

often preferable in exploratory querying because the user
may be testing hypotheses and may not completely un-
derstand the relationship between various data sources.
For example, a user may want to extend the query of Fig-
ure 1 by joining contributors with home sales they have
made, even though the user is not sure that all contribu-
tors have sold homes. Outerjoin semantics are especially
important for predicates involving sources that were not

directly specified by the user but were instead automati-
cally added through one of the mechanisms discussed in
Section 2. That source might merely provide some “em-
bellishing columns” that the user does not care about.

Referential integrity constraints: Alternatively, if two
sources A and B satisfy a referential integrity constraint
that any value in a column A.p exists in some B tuple’s
column B.q, then the query processor can give out an
intermediate A tuple without checking the equality pred-
icate A.p=B.q.

Such referential integrity constraints are seldom known for
Web sources, especially across sources that are administered
independently. However we found that they arose naturally
in one common setting we observed in our FFF scenario.
Web sources are often incomplete, and contain only a sub-
set of values from the natural domain of the data they serve.
For example in Figure 1, Yahoo may not provide the house-
hold incomes for some contributors’ neighborhoods, but that
does not mean that their household does not have an asso-
ciated income. We avoid this problem, by specifying that a
wrapper over such a source should always deliver a matching
tuple full of NULLs, rather than returning no match. Such
wrappers provide implicit referential integrity constraints for
foreign keys that refer to them, by effectively turning all
equijoins involving this column into outer joins – without
requiring an outer join to be specified in the query.

Thus, our definition of partial results guarantees mono-
tonicity at the client: if a subtuple is passed to the client
as part of a partial result, it will never need to be removed
from a subsequent partial result. This conservative defini-
tion simplifies the client implementation, and avoids con-
fusing a user. It does limit interactivity for queries that
perform standard (“inner”) joins across sources without ref-
erential integrity; we believe that such queries will be rare
in exploratory Web querying.

3.3 Composability of Partial Result Tuples
Partial result tuples could arrive from the query proces-

sor in a staggered and unpredictable manner, depending on
the relative speeds of the data sources and the query plan
used for executing the query. The client must continually
compose such incoming partial result tuples to form inter-
mediate results. The effectiveness of this operation depends
entirely on the sophistication of the client, and the nature
of the partial result tuples.

At one extreme, if the client can run on powerful ma-
chines, it can be implemented using a continuous query pro-

cessor (e.g., [6]). Such a client can handle any partial re-
sult tuple. In fact, the “server-side” query processor need
do no work and can merely ship base-table tuples over to
the “client”!

At the other extreme, a low power client (such as a browser
or a DHTML application) can be a Unix-style pipe, merely
appending partial result tuples to a standard output stream
as they arrive. This client is analogous to a non-scrollable
cursor interface, and the only partial result tuples it can
accept are full result tuples.

We have found neither of these extremes to be satisfac-
tory. The first solution is too heavy-weight since we want our
client to run on zero-administration, low-power machines
(our FFF client is implemented as a Java applet). The sec-
ond solution cannot benefit from partial result tuples.

As a middle ground, we use a Hash client that works as
follows. We choose a minimal subset of the result columns as
the key columns for the partial results, such that the value
of these key columns uniquely determines all other result
column values. The Hash client maintains the intermediate
result in a main memory hash table hashed by these key
columns. Each incoming partial result tuple is hashed on
the values of its key columns to determine which tuple of
the intermediate result it matches. If no match is found, the
partial result tuple is added to the hash table as a new tuple
in the intermediate result. If a match exists, each of the
column values in the partial result tuple is used to fill in (or
update, in the case of aggregate columns) the corresponding
column in the matching intermediate result tuple. We next
discuss how the key columns can be identified.

3.3.1 Choice of Key Columns
Since our client uses the key column values to join partial

result tuples together, every partial result tuple must span1

the key columns. We choose these key columns to be a min-
imal set s such that there is no other set s′ ⊂ s that can
uniquely determine the values of all result columns. This en-
sures that we constrain the query processor minimally, and
allow it to generate partial result tuples at high throughput.

In the case of group by queries, the group by columns
themselves form the key columns. The same applies to cube
by queries as well, except that the cubing column values will
be “ALL” for rolled up groups. For other queries, the key
columns of the output can be easily derived from the table
schemas and any referential integrity constraints over the
tables (see [22] for details).

4. DYNAMIC QUERY REFINEMENT
As mentioned in Section 2.3, a user’s actions at the user in-

terface map into refinements of the query, which specify their
interests in different kinds of intermediate results. These
actions can be captured via a simple API expressing three
kinds of preferences:

ColumnPriorities (CPs): Preferences for particular columns
in the intermediate result

RowPriorities (RPs): Preferences for intermediate result
rows that satisfy particular row predicates

RowColumnPriorities (RCPs): Preferences for particu-
lar columns in rows that satisfy particular row predicates

1We say that a tuple spans a column if that column is a part of
the tuple’s schema

4.1 Specifying Query Refinements
The most direct way for a user to refine a running query

is by specifying CPs for particular columns in the display.
These can be set in the client of Figure 1 by selecting the
desired column, and clicking on the “speed-up” or “slow-
down” buttons. The user can also ask to hide a column on
the screen, assigning a low priority to that column.

Users can also submit preferences implicitly, by navigat-
ing through the intermediate results being displayed on the
screen. The client monitors the user’s navigation at the in-
terface and accordingly judges what portions of the data
they are interested in.

Users primarily navigate in the client interface by scrolling,
or by rolling up and drilling down the group by hierarchy.
Both these actions change the results that are displayed on
screen. The system infers that this indicates user interest
in the displayed rows, and prioritizes their processing at the
expense of other rows. The visible portion of the results
are mapped onto a row predicate that is given a high RP2.
If the user has asked to sort by a non-categorical3 column,
the range of values displayed on screen is used as the row
predicate. However if the sort is on a categorical column (or
there is no specified sort order), a row predicate is inferred
for each of the rows on the screen, based on the key column
values for these rows. E.g., in a group by query the row
predicates are equality predicate on the group by columns.

For cube by queries, the drill-down resolution on each
row determines the columns visible in that row. Therefore
the drill-down resolution is mapped onto a RCP for that
row, prioritizing the visible columns over the hidden ones.

4.2 Benefit of a Partial Result Tuple
The query processor uses the priorities specified by the

user to gauge the benefit of a partial result tuple. In terms
of the priorities described above, the benefit of updating a
single cell in column c and row r of the client interface is:

Benefit(cell[r, c]) = RP (r) × CP (c) × RCP (r, c)
The first component of the right hand side accounts for

the user’s preference for the row containing the updated
cell. The second component handles the preference for the
column in which the cell falls. We take the product of the
CP and the RCP so that both these priorities can be used
to arbitrarily influence the effective cell priority. A single
partial result tuple can update multiple cells at the user
interface, and the benefit of the partial result is computed
as the sum of the benefits of updating each of these cells.

5. A QUERY PROCESSOR FOR GENERAT-
ING PARTIAL RESULT TUPLES

We now shift focus to the generation of partial results by
a query processor. Traditionally, query processors optimize
queries to form query plans that generate the complete query
results as quickly as possible. If pipelining operators are
used, full result tuples will be gradually produced as the
query is executed.

2All rows are given a RP of 1 when query execution starts. When
a row predicate is prioritized, we raise its RP to be 10. We have
not found higher values of RP to affect the prioritization, since
the prioritization is limited by the speeds of the underlying data
sources.
3An attribute is considered to be categorical if there is no natural
sort order defined on it. This information must be provided in
the database catalog.

A simple way to enhance such a pipelined system to gen-
erate partial result tuples is to copy the intermediate query
processing tuples to the client as shown in Figure 3. But
this approach has many problems:

1. The pipelining nature of the plan means that tuples flow
through the plan at the rate of processing of the slow-
est operator in the plan. Thus partial results can be
produced no faster than complete results can be.

2. The dataflow in this plan is rigid and statically deter-
mined, and may turn out to be sub-optimal when user
interests or the properties of the data sources change.
For example, in the query plan of Figure 3, if the user
loses interest in the S column, or if data arrival from
S-source happens to slow down, the query processor has
no way of adapting to generate RT results instead.

3. In fact, different kinds of dataflows may be optimal for
different kinds of tuples, even when user interests and
data source properties remain constant. For example,
if the user is cubing by R.a and S.b, and wants to drill
down into the S component only for R tuples with cer-
tain values of R.a, the plan of Figure 3 is still inefficient
because the join with S is needed only for those R tuples.
In fact, any static query plan will be inefficient for such
mixed-preference scenarios.

The first problem can be avoided by inserting buffers into
the plan so that query operators can be run as independent
threads. But the extent of buffering, and the scheduling of
these threads, must be adaptive. For example, one could
completely materialize the RS results in a temporary table.
This materialization drains RS tuples, so the RS join can
proceed rapidly. But if the user loses interest in the S col-
umn after the query starts, they will get no useful partial
result tuples until the RS join completes. In general, if the
buffering is not dynamically adaptable, the second and third
problems are aggravated – a bad choice of plans may pre-
vent any useful partial result from being generated until a
materialization point is reached.

In general, the key requirement in a query processor gen-
erating partial results is adaptivity – the query processor
must be able to adaptively choose the best way to route dif-
ferent kinds of tuples through various query plan operators,
in response to changing user interests and properties of the
data sources and query operators. This adaptivity breaks
down into three design requirements:
Adaptive Operator Ordering: The order in which a tu-
ple goes through query operators must be adaptable, ac-
cording to the nature of the desired partial result, as user
interests and source properties change.
Adaptive Data Ordering: The order in which different
kinds of tuples get processed must be dynamically adapt-
able, according to current user interests.
Buffering: The above ordering goals have an implied re-
quirement: intermediate tuples must be buffered until they
are ready to be processed, so that each operator can run
independently of other operators.

Given this motivation and requirements, we proceed to de-
scribe a query processor architecture that enables such adap-
tive ordering and buffering (Section 5.1), and follow that
with a discussion of policies for the ordering (Section 5.2).

5.1 Architecture for Adaptive Ordering
Dynamic operator and data reordering cannot be achieved

within a statically chosen query plan. Instead, we use the

Eddy

SR

 partial result
tuples

Client

Figure 4: Dynamic operator ordering using an Eddy

approach introduced in [2] where tuples are routed between
query operators using a separate routing operator called an
Eddy.

Given a query, the system first checks that it can be ex-
ecuted under the access restrictions imposed by the data
sources (as in [17] (this is not an issue for local database
tables, but does matter for Web sources that may permit
data access only if some fields are bound). Then it creates
query operators for this query, using a pre-optimizer that
chooses access methods to access data from each source, a
spanning tree of the query’s join graph, and a join opera-
tor for each edge in the join graph [2]. Finally the system
creates a separate Eddy routing operator.

Each query operator runs in a separate thread. The Eddy’s
role is to route tuples between the these operators, as shown
in Figure 4. As intermediate tuples are routed through op-
erators, they accumulate columns from the various query
sources and pass through the query predicates, until they
form full query result tuples. If a tuple entering the Eddy
spans the key columns of Section 3, it is copied to the client
as a partial result tuple. Tuples leave the dataflow when
they have passed all predicates and spans all tables.

To ensure that the Eddy routes tuples only to needed op-
erators, each tuple is tagged with a TupleState – a bitmap
indicating the tables it spans, and the query predicates it
has passed. This TupleState determines at each stage the
operators that a tuple needs to be routed to, and is anal-
ogous to the Ready and Done bits of [2]. When a module
has finished returning all matches for a particular tuple, it
sends back a Done message to the Eddy. The Eddy uses
this to track the number of outstanding tuples at each mod-
ule. The query is terminated when there are no tuples in
the dataflow, and there are no outstanding tuples at any
module.

In this architecture, the Eddy’s routing controls the op-
erator ordering at a per-tuple granularity. However, unlike
in [2], our routing policy should not be designed to minimize
the completion time of the query when data source proper-
ties change; in Section 5.2 we will develop a routing policy
that is geared to generate partial results flexibly.

The next requirement is data ordering. The simplest so-
lution for data ordering would be to utilize indexes in the
data sources to choose tuples of interest, as in the Index
Stride method of [13]. However, in FFF we seldom have
control over the Web sources’ access methods – the index
needed for satisfying a user’s priorities may not be avail-
able. Instead we order the tuples within the query processor
itself, through the Juggle online reordering operator of [23].
Juggle reorders tuples within dataflow pipelines in a best-
effort fashion, by exploiting throughput differences between
the pipeline operators. While slow operators are processing

C
li

en
t

R S

JuggleEddy

partial
result
tuples

Figure 5: JuggleEddy query processor architecture

tuples, Juggle fetches and buffers tuples from other opera-
tors, and reorders them through an internal memory buffer
– which may, if needed, spill to disk.

Tuple flow through the JuggleEddy
As discussed in [23], the effectiveness of Juggle is entirely
dependent on the throughput differences between the oper-
ators flanking it in a query plan. In [23], Juggle is placed
above a scan on the table being reordered; this assumes that
user preferences are on attributes from a single scannable
table alone, and that the scan has higher throughput than
other operators.

This approach is not applicable in our setting, because
the user preferences might be specified on attributes from
multiple tables, and these tables may not have scan access
methods. In general, it is difficult to determine an optimal
location for reordering in a dataflow because the operator
throughputs could vary dynamically.

We tackle both these problems by not using a separate op-
erator for reordering tuples in the dataflow. Instead we com-
bine operator and data ordering, using the tuple reorderer
itself as the internal buffer for the Eddy. This enhanced
Eddy, which we call a JuggleEddy, is depicted in Figure 5.
All tuples coming into the query dataflow, whether they are
input tuples from the sources or intermediate tuples from
other operators, are placed in the reorderer. If any of these
tuples also spans the key columns described in Section 3,
they are copied to the client as partial results. The Jug-
gleEddy primarily functions as a router, sending tuples from
the reorderer buffer to modules, and receiving results back
from them. Both the tuple to process next, and the query
operator to send it to, are chosen based on the user interests
and data source properties.

This architecture allows the system to control the order of
tuple delivery to each operator, and also the order in which
each tuple flows through the various query operators. It also
implicitly solves both the buffering requirement for partial
result generation, and the reorder placement problem. Since
all intermediate tuples are buffered in the reorderer, query
operators can proceed at varied speeds. As the same time,
the reordering performance adjusts itself to the speed of each
query operator. Fast operators do not give enough oppor-
tunity for the reorderer, and so many of their input tuples
might be unprioritized. But this is not much of a problem,
since these operators process their inputs quickly. Slow op-

erators will not have high processing throughput, but will
concentrate their efforts on the most important tuples — by
giving more time for the reorderer to work.

5.2 Policies for Operator and Data Ordering
In the architecture described above, the JuggleEddy’s rout-

ing policy determines the partial result tuples generated over
time. This policy involves two interdependent decisions that
the JuggleEddy continually makes:

Data ordering: Among all the tuples in its tuple pool,
which tuple should be routed next?

Operator ordering: Among all the operators that this cho-
sen tuple can go to, who should it be routed to?

Since we aim for the intermediate result to have maxi-
mum value to the user, we gauge the benefits of each partial
result tuple in terms of the user preferences, as discussed in
Section 4.2. We now discuss how to quantify the benefit of
routing a particular kind of tuple to a particular operator,
and then present ordering policies that can generate partial
result tuples with high benefit.

5.2.1 Benefit of Sending a Tuple to an Operator
Suppose that the eddy chooses a tuple t and routes it to a

operator M , which generates a set of tuples O = {o1, o2, . . . of}
in response. The number of tuples f output by M is called
the fanout. Suppose further that the fields of t can be used
to update the values of a set τ of output columns (by ap-
plying the expressions in the select clause), and that the
fields of each oi can be used to update the values of a set θ
of output columns, with τ ⊆ θ. If t (or oi) does not have
the key result columns as discussed in Section 3.3, then τ
(correspondingly θ) = φ. Thus θ − τ is the set of output
columns whose values are generated by M (e.g., if M is a
selection operator, θ = τ and f ≤ 1). When the expressions
in the query’s select clause are applied on oi, a partial
result tuple is generated. Let ρ(oi) denote the row in the in-
termediate result that this partial result tuple affects. Now,
B(t, M), the total benefit of routing t to M , is defined as the
sum of the benefits of all the partial result tuples generated
from {o1, o2, . . . of}. This can be written as,

B(t, M) =
∑

1≤i≤f

∑

c∈θ

RP (ρ(oi)) × CP (c) × RCP (ρ(oi), c)

−
∑

c∈τ

RP (ρ(t)) × CP (c) × RCP (ρ(t), c)

The f |θ| positive components of the above expression are
the benefits gained from o1, o2, . . . of , gauged as in Sec-
tion 4.2. The negative component serves to prevent double
counting; since τ ⊂ θ, the cells at the client updated by the
o1, o2, . . . of subsume those that have already been updated
by t. For a given t, the JuggleEddy must estimate these
total benefits for various operators M , before routing t, so
that it can choose the best operator to route t to.

This involves an estimation problem. The JuggleEddy
must identify the output rows that will be affected by the
results returned by M , i.e., it must identify the row pred-
icates that the results will satisfy, in order to estimate the
RPs and RCPs. This estimation is not direct because, in
general, the row predicates in the user’s prioritization may
not be evaluable using the columns in t alone. Currently
we approximate the RPs (and RCPs) in the above equation
by the average of the RPs (and RCPs) of all the row predi-

cates that t could satisfy. A more sophisticated alternative
would be to use a weighted average, perhaps using a dy-
namically updated histogram of the number of intermediate
tuples that satisfy each row predicate, or even a joint distri-
bution on attributes of t referenced by the row predicates.

5.2.2 A First-Cut Routing Policy
The JuggleEddy’s goal in routing is to increase the total

benefit of the partial result tuples given out over time, as
quickly as possible. Hence a natural policy is to continually
choose tuples and route them so as to maximize the gra-
dient of this total benefit at any time. When a tuple t is
sent to an operator M , the tuples returned by M provide
an incremental partial result benefit B(t, M), but M will
take a time C(t, M) to process t. The JuggleEddy’s pol-
icy then is to continually choose tuples t and route them to
operators M so as to maximize B(t, M)/C(t, M), the pay-
off of routing t to M . The payoff is modeled as a vector−−−−−−−−−−→
Payoff(t, M) = 〈C(t, M), B(t, M)〉; keeping the cost
and benefit as separate components helps us later, when we
improve upon this routing policy in Section 5.4.

5.3 Reordering and Routing Mechanism
Obviously, computing B(t, M)/C(t, M) for all pairs of tu-

ples and operators and reordering tuples accordingly is pro-

hibitively expensive. Fortunately however,
−−−−−−−−−−→
Payoff(t, M)

as derived in the last section does not vary with each tuple.
Instead, tuples fall into a relatively small set of groups.−−−−−−−−−−→

Payoff(t, M) depends only on M , the fanout and cost
of sending t to M, the columns spanned by t, and the row
predicates that t satisfies. Recall from Section 5.1 that each
tuple has an associated TupleState that denotes the sources
it spans, and the query predicates it has passed. Clearly
the set of columns spanned by a tuple depend only on the
sources it spans, assuming that projections are done as soon
as possible, as is standard. Hence the set of columns spanned
by a tuple is captured in its TupleState. The JuggleEddy
maintains a running estimate of the fanout and cost of rout-
ing tuples to each operator M , by tracking the number of
tuples sent to M , the number of tuples returned by M , and
the number of Done messages it returns. Individual oper-
ators can also choose to provide their own cost and fanout
functions at a finer granularity of the TupleState of the input
tuples. Thus the fanout, cost, and set of columns spanned
by t are all determined by its TupleState.

The total number of row predicates that a tuple could
satisfy is bounded by the number of distinct rows that the
user prioritizes at any given time, which is likely to be small.
We define the TupleGroup g of a tuple as an ordered pair of
its TupleState and the row predicate it satisfies4.

From the above discussion, the TupleGroup g alone de-
termines the payoff of a tuple for each operator M . We call

this payoff
−−−−−−−−−−→
Payoff(g, M). Therefore the reorderer needs to

reorder tuples only at the granularity of TupleGroups.

5.4 Gauging the Multi-Step Benefits of Routing
The routing and reordering policy developed so far is a

greedy policy. It chooses a tuple and routes it to an operator

4If t could satisfy more than one row predicate, B(t, M) depends
on the common subset of all these row predicates that we know t
will satisfy. If the row predicates are equality predicates on group-
by columns, we express this set concisely as the set of (prioritized)
group-by column values of t.

B
en

ef
it

Cost(time)

V
alu

e(g
')

Payoff(
g,M

)TotPayoff(
g,M

)

B
en

ef
it

Cost(time)

Value(g')

Payoff(
g,M

) =

TotP
ay

off(
g,M

)

Figure 6: Payoff, TotPayoff and Value of routing a tuple
in two situations

select F.Name, C.Crime, Y.income
Query 1 from FEC as F, Crime as C, Yahoo as Y

where F.zip = Y.zip and F.zip = C.zip

select Avg(C.crimeRating), Avg(F.Contribution),
F.State, Y.College DIV 25

Query 2 from FEC as F, Crime as C, Yahoo as Y
where F.zip = Y.zip and F.zip = C.zip
cube by F.State, Y.College DIV 25

Figure 9: Queries used in our experiments. cube by is the
Telegraph syntax for specifying data cubes.

so as to maximize the payoff from the partial result tuples
generated by that routing. However this payoff is only the
immediate, one-step payoff of a single routing decision. In
some queries, a particular routing may not generate useful
partial result tuples immediately, but may instead generate
a tuple that can be used, subsequently, to generate highly
beneficial partial result tuples.

For example, in a four-table join with the join graph being
a chain P − R − S − T , suppose that S and T are index
sources whose lookup values are provided by attributes of R
and S respectively. Suppose also that the columns provided
by T have high CPs. If the columns provided by S have
low CPs, there is little immediate payoff in probing the the
S index with R tuples. However this probe will generate
an RS tuple, which can subsequently be used to generate
a highly beneficial RST tuple. In order to factor in such
subsequent benefits, we modify the reordering and routing
policy as follows.

Since the payoff only considers the immediate benefit of

the routing, we introduce another quantity
−−−−−−→
V alue(g), the

value of a TupleGroup, as the best gradient that could be
obtained by routing tuples of that TupleGroup to all possi-
ble modules. Suppose that when tuples of TupleGroup g are
routed to M , M returns tuples of TupleGroup g′. As Fig-
ure 6 illustrates, the value of the g′ tuples could be better or
worse than the immediate payoff gained from this routing.
The ability to buffer tuples in the JuggleEddy allows us to
dynamically decide whether to make use of the g′ tuples or
not. So we combine the immediate payoff of routing g-tuples
to M with the value of the resulting g′-tuples, as follows:

−−−−−−−−−−−→
TotPayoff(g,M) = max(

−−−−−−−−→
Payoff(g,M),

−−−−−−−−→
Payoff(g,M) + f.

−−−−−−→
Value(g’))

−−−−−→
Value(g) = max

all M
(
−−−−−−−−−−−→
TotPayoff(g,M)) where,

max chooses vector with higher gradient (benefit per unit
cost), and breaks ties by by choosing vector with smaller cost
(to improve interactivity). When a query starts, V alue(g)
is set to 0 for all TupleGroups g, and is updated continually
as tuples are routed, per the above recursive definition.

Name Description Location
FEC List of contributors to the 2000 presidential

election campaign of the Republican party
candidate

Federal Election Com-
mission (www.fec.gov)

Crime Crime ratings in each zip code region APBNews
(www.apbnews.com)

Yahoo Demographic information about each zip
code region

Yahoo
(realestate.yahoo.com)

Figure 7: Sources used in our experiments

0 2000 4000 6000 8000 10000

Time (seconds)

0

150000

N
um

. c
el

l u
pd

at
es

JuggleEddy
Pipelined Plan

Figure 8: Partial result generation
for FEC �� Yahoo �� Crime

0 2000 4000 6000 8000 10000

Time (seconds)

0

50000

N
um

. t
up

le
s

ro
ut

ed

Scan from FEC
to Yahoo
to Crime

Figure 10: Tuple routing for FEC �� Yahoo �� Crime

6. EXPERIMENTAL RESULTS
In this section we experimentally evaluate our architecture

for partial result generation. We study the effectiveness of
our system in producing partial results that match user in-
terests, and the role played by various components of the
query processor.

Our experiments involve queries over various Web data
sources providing campaign finance information. Figure 7
describes these sources. FEC is a scannable (i.e., bulk-
downloadable) source containing information about contrib-
utors to the 2000 campaign of the Republican presidential
candidate. Crime is an index source that accepts a zip code
as an input binding, and returns a crime rating for that area.
Likewise, Yahoo maps zip codes onto demographic informa-
tion such as average annual household income and percent-
age of college-educated people in that area. These indexes
are all implemented as asynchronous indexes — ones that
accept multiple bindings at a time and return matches asyn-
chronously, so as to exploit the good throughputs and poor
response times of distributed sources [9]. Our experiments
were run on a lightly loaded machine with dual Pentium-
III, 666MHz processors and 768MB RAM, running RedHat
Linux 6.0. Figure 9 lists the queries involved.

6.1 Utility of Partial Results: Need for Buffering
Our first experiment is designed to demonstrate the utility

of partial results in queries over Web sources. We consider
a join of FEC, Yahoo, and Crime (Query 1 of Figure 9).
Tuples are scanned from FEC, and the zip code column value
is used to do lookups in the Crime and Yahoo indexes. For
this experiment we do not consider any user feedback during
the query.

Figure 8 shows the number of cells filled in at the client in-
terface over time, when the JuggleEddy is used and when a

pipelined, statically optimized query plan is used (this plan
scans from FEC, then probes into an index on Yahoo, and
then into Crime, because Yahoo is faster than Crime). The
number of cell updates is equivalent to the cumulative ben-
efit of the partial result tuples returned over time, assuming
that the user has equal preference for each of the output
rows and columns.

Observe that in the initial stages, the partial results from
the JuggleEddy come much faster than those from the pipelined
query plan. The JuggleEddy curve has 2 knees dividing it
into 3 stages; in the first stage the partial results are mainly
dominated by FEC tuples; in the second stage the FEC
scan is over and FEC-Yahoo pairs dominate; and in the
last stage the JuggleEddy is only doing index lookups into
Crime for the remaining tuples. In contrast the curve for the
pipelined query plan is almost strictly linear, because tuple
flow in that plan can only happen at the speed of the Crime
source.5 In the first phase (653 seconds) of this experiment,
the throughput of the JuggleEddy is 6.8 times that of the
pipelined plan!

The JuggleEddy’s routing is explained in Figure 10, which
plots the routing over time to different operators. Notice
that the scan from FEC goes much faster than the routing
into Crime or Yahoo. This is possible only because the ex-
cess FEC tuples can be buffered inside the reorderer. Lack
of such buffering is what causes the slowness of the pipelined
plan. This rapid scanning from FEC and routing into Ya-
hoo in the initial stages of the processing is analogous to
the work done by query scrambling [27] during delays. How-
ever, scrambling occurs only when sources are delayed, and
is geared towards minimizing query response time, whereas
the JuggleEddy changes its routing even when sources slow
down or user interests change.

6.2 Volatile Sources: Need for Operator Ordering
To study the effect of unpredictable data sources, we re-

run Query 1, imposing an artificial 200 second delay on Ya-
hoo after it has processed 2000 tuples. Figure 11 again plots
the number of cells filled in. Notice that between about 100
to 300 seconds, when the delay is in effect, the generation
of tuples from the pipelined plan completely stops, whereas
the JuggleEddy continues to generate partial results, albeit
at a lower rate. Figure 12 plots the number of different kinds
of tuples routed over time to Crime and Yahoo. We see that

5The slope for the pipelined query plan is not the same as the
slope of the last stage of the JuggleEddy, because we are plot-
ting the number of cell updates on the screen. Each result from
the pipelined query plan contributes three cell updates, whereas
in the last stage of the JuggleEddy each result updates only
D.income.

file:www.fec.gov
file:www.apbnews.com

0 200 400 600

Time (seconds)

0

50000
N

um
. c

el
l u

pd
at

es
JuggleEddy
Pipelined Plan

Figure 11: Effect of Yahoo delay on
result output

0 200 400 600

Time (seconds)

0

6000

N
um

. t
up

le
s

ro
ut

ed

FEC to Yahoo
FEC-Crime to Yahoo
FEC to Crime
FEC-Yahoo to Crime

Figure 12: Effect of Yahoo delay on
routing

0 200 400 600

Time (seconds)

0

5000

N
um

. t
up

le
s

sc
an

ne
d

CA
MA
MD
NJ

Figure 13: Rate of scanning from
FEC

the JuggleEddy is quite successful at learning about the de-
lay, and adapts its routing to route most tuples to Crime
during the delay.

Such an adaptation in operator ordering can be achieved
through some of the other approaches to adaptive query pro-
cessing (e.g., [2, 27]), but they chose as a design to produce
only full result tuples6. Regardless of the approach used, the
query completion time is not affected in this example, but
without partial result generation the system’s interactivity
would be affected for the duration of the delay.

6.3 Dynamic User Preferences: Need for Data Or-
dering

Our next set of experiments concerns dynamic user prior-
itization during query execution.

Approximate prioritization of join results
Query 2 is a modification of Query 1. It computes average
contributions for the donors, and crime levels in their neigh-
borhoods, grouped by their state of residence and the per-
centage of college educated people in the neighborhood (the
percentage is divided into four quantiles). We run this query
with a simulated user behavior where the user is drilling
down into the data in detail, and is scrolling over the aver-
age contributions for four visually contiguous (when results
are sorted in alphabetical order) groups : 〈MA, 3〉, 〈MD, 0〉,
〈MD, 1〉, 〈MD, 2〉. This prioritization has the property that
the groups (and hence the prioritized row predicates) involve
columns from two tables, FEC and Yahoo.

Figure 13 plots the number of tuples scanned in from FEC
for the two prioritized states MA and MD, and for two other
comparison states CA and NJ. Notice that contributions
from CA are much more common than those from MA and
MD, and tuples from NJ are about as common as those from
MD. Figures 14 and 15 show the number of tuples routed to
the Crime and Yahoo sources for these four states.

Observe that the prioritization of MA and MD is not very
good for the routing to the Yahoo index (Figure 15). As we
saw in Figure 10, most of the tuples coming into the Yahoo
index are tuples scanned from FEC. The throughput differ-
ence between the FEC scan and the Yahoo index lookups is
not much, constraining the effectiveness of the reorderer.

In contrast, the prioritization among tuples routed to Crime
is much better (Figure 14). MD tuples are routed to Crime
even faster than CA tuples, although CA has many more

6[15, 14] reoptimize plans only at materialization points within
the QP, so they cannot adapt to delays at all.

contributors. This is because the JuggleEddy can take ad-
vantage of the higher throughput difference between FEC
scans and Crime index lookups. Most of the MA and MD
tuples routed to Crime have been prioritized by the Jug-
gleEddy twice: once approximately before the lookup into
Yahoo, and again accurately after the lookup.

Comparison with Alternative Reorderer Placements
To study the value of placing the Juggle reorderer inside the
Eddy, we experiment with an alternative, heuristic reorder
placement scheme. We perform reordering only on tuples
that contain all columns needed to evaluate the user prior-
ities. In our query, since the user’s prioritization involves
columns from both FEC and Yahoo, we perform reorder-
ing only on tuples that have components from both these
sources; all other tuples are batched together into one group
for reordering.

Figures 16 and 17 plot the routing of tuples from the same
four states as in the previous experiment, using this heuristic
reorder placement scheme. Observe that the prioritization is
much weaker. The tuples routed to Yahoo are not prioritized
all, since we only reorder after the join with Yahoo. The
tuples routed to Crime are prioritized, but not well. CA
tuples are still routed to Crime in larger numbers than MA
and MD tuples. This happens because tuples coming to
Crime direct from FEC are not reordered at all. Tuples
coming to Crime after joining with Yahoo are reordered,
but the throughput difference between the Yahoo and Crime
lookups is not as significant as that between the FEC scan
and the Crime lookup.

6.4 Combining Operator and Data Ordering
Our final experiment illustrates the combined working of

operator and data ordering. We run Query 2, with a differ-
ent user prioritization model. We simulate a situation where
the user is scrolling over 7 visually contiguous states: NJ,
NM, NV, NY, OH, OK, OR, and PA. In addition, the user
has drilled down into the college education percentage only
for NY. As a result, there is a an implicit RCP of 0 on the
select columns from Yahoo for all states except NY (whose
RCP is 10 on the Yahoo columns).

Figures 18 and 19 plot the scanning and routing of tu-
ples from NY, and from another prioritized group NJ. As
Figure 18 shows, NY and NJ tuples occur with comparable
frequency, though NY is a little more common. However,
as Figure 19 shows, the routing of NY and NJ tuples is
completely different. NY tuples are mostly routed to Ya-

0 200 400 600

Time (seconds)

0

800

N
um

. t
up

le
s

ro
ut

ed

CA
MA
MD
NJ

Figure 14: Routing to Crime

0 200 400 600

Time (seconds)

0

1000

N
um

. t
up

le
s

ro
ut

ed

CA
MA
MD
NJ

Figure 15: Routing to Yahoo

0 200 400 600

Time (seconds)

0

800

N
um

. t
up

le
s

ro
ut

ed
 CA

MA
MD
NJ

Figure 16: Routing to Crime with
reordering on FEC-Yahoo tuples only

0 200 400 600

Time (seconds)

0

800

N
um

. t
up

le
s

ro
ut

ed

CA
MA
MD
NJ

Figure 17: Routing to Yahoo with
reordering on FEC-Yahoo tuples only

0 200 400 600

Time (seconds)

0

1000
N

um
. t

up
le

s
ro

ut
ed NY from FEC

NJ from FEC

Figure 18: Tuples scanned from
FEC for two prioritized groups

0 200 400 600

Time (seconds)

0

800

N
um

. t
up

le
s

ro
ut

ed

NY to Yahoo
NJ to Yahoo
NY to Crime
NJ to Crime

Figure 19: Routing of tuples from
two prioritized groups

hoo first, because that index is faster than the Crime index,
and demographics data for NY tuples is prioritized. Some
NY tuples are still routed to Crime. From inspection of
the logs, we found that most (92.7%) of these tuples have
already been joined with Yahoo and have nowhere else to
go. In contrast, NJ tuples are mostly routed to Crime first,
because there is no benefit in routing them to Yahoo. Nev-
ertheless we see that a reasonable number of NJ tuples do
get routed to Yahoo. Again, most of these are tuples that
have already been joined with Crime. Since Yahoo has high
throughput and there aren’t enough NY tuples to keep it
busy, the JuggleEddy chooses to route these joined NJ tu-
ples to Yahoo rather than letting the Yahoo join sit idle.
This is a form of pre-computing query results, which can
help if the user subsequently drills down into the NJ group.

7. RELATED WORK
It has often been noted that the traditional querying model

of giving full results after query execution is bad for inter-
active or distributed environments (e.g., [3, 20, 13]). There
has been much recent work to counter this slowness by pro-
cessing queries in an online fashion, continually outputting
full result rows or statistical approximations to query aggre-
gates (e.g., [13, 24, 19, 12]). While this approach is effective
over centralized databases, it does not handle the volatili-
ties associated with Web sources, and the result generation
is constrained by the slowest source.

An alternate approach is to precompute summary data-
structures over datasets and use them to give quick, ap-

proximate query answers. [8] survey this approach in detail.
While this works well for predictable queries, it fails for ad-
hoc queries that arise in exploratory querying. It also seems
unlikely that precomputed summaries will be available over
autonomously maintained Web sources.

There have been a few papers in recent years that investi-
gate approximations that skip result columns. [4] proposes
that if some sources are unavailable at the start of query
execution, the system can execute a part of the query on
the other sources and generate a parachute query to com-
plete the original query when all sources are available. But
they do not give out query results incrementally, and do not
adapt to dynamic volatilities or user preference changes.

There is also a rich literature on looser modes of query
specification (e.g., [28, 18, 7]) where the system automat-
ically relaxes query constraints, or adds additional sources,
to provide expanded answers. As discussed in Section 1, the
techniques of this paper are especially appropriate for such
systems.

Algorithmically, our work is related to the recent body of
work on adaptive query processing. Our JuggleEddy oper-
ator builds on the Juggle and Eddy operators introduced
in [23] and [2] for adaptive tuple and operator ordering.
Query Scrambling [27] is a way to dynamically reschedule
the flow of tuples in query plans when there are source de-
lays, so that the query processor can continue doing useful
work. [5] also dynamically schedule pipelinable fragments of
queries during source delays. However unlike our work this
rescheduling is aimed at minimizing the overall response-

time of the query after the delay ends – it is not aimed at giv-
ing partial results to the user during the delay. Other work
on adaptive query processing [15, 14] reoptimizes queries at
materialization points within the query plan. We believe
this approach is too coarse-grained for Web sources, espe-
cially because a sudden slowness or delay in a source may
inordinately delay the reaching of a materialization point.

Recently, Urhan and Franklin [26] present ways to dynam-
ically schedule the tuple flow in a pipeline of XJoins to give
out more tuples, or prioritized tuples, in the early stages of
processing. The scheduling algorithm of [26] is specifically
designed for the XJoin, and functions differently when the
XJoins are in different stages of their processing. This is
in contrast to the JuggleEddy routing policy that observes
properties external to the query operators. It will be inter-
esting to design an API that allows a combination of these
two approaches – using standard routing policies as a default
but allowing individual operators to use specialized policies
to control the routing of tuples through them.

8. CONCLUSIONS AND FUTURE WORK
We have studied the generation of partial result tuples

during query execution as a way of improving system inter-
activity. Partial results are especially important in queries
over distributed sources, where diverse and unpredictable
source speeds hinder the construction of full result tuples.
We have seen that generating partial results in response to
user interests requires fairly significant changes to the query
processing architecture. An important requirement is that
the query processor must be adaptive, both to volatilities
in data sources and to changes in user interests. This in-
volves dynamic adaptation of both the order of tuples in
the query dataflow, and the order in which these tuples flow
through various query operators. Such dynamic adaptation
can be done effectively by using an Eddy operator to route
tuples between other operators, and integrating the Juggle
reorderer into the Eddy.

This architecture lets users refine ongoing queries by speci-
fying preferences on particular columns or rows of the result.
One useful direction for future work is to radically extend
the scope of query refinement to make query specification
itself a gradual process. E.g., a user can start with a sim-
ple initial query and gradually add sources to it after seeing
initial results (the converse, removing query sources, is akin
to giving a low priority for columns from these sources).

The Hash client that we discussed a simple approach,
hashing on key columns, to compose partial result tuples.
However, if the key columns of the result span multiple
sources, partial results can be displayed only after these
sources are joined. It would be valuable to investigate client
programs that can handle partial result tuples that may not
contain all key columns.

We have developed a simple policy for this routing that
works quite well for queries over Web data sources. However
this policy can be extended in many directions. For example,
result priorities can be assigned based on expected user scroll
behavior rather than current scroll regions.

Acknowledgments: FFF is joint work with Sirish Chan-
drasekaran, Amol Deshpande, Nick Lanham, Mike Franklin,
Sam Madden, Fred Reiss, Mehul Shah, Kyle Stanek, and
Aaron Stein. We want to thank them for help with the
implementation, and for valuable feedback during the de-

velopment of the ideas in this paper. We also want to thank
our reviewers for helpful suggestions. This work was funded
by a DARPA grant #N66001-99-2-8913, NSF ITR grant
#0122599, and a Microsft Fellowship.

9. REFERENCES
[1] G. Antoshnekov and M. Ziauddin. Query processing and

optimization in Oracle Rdb. VLDB Journal, 5(4), 1996.
[2] R. Avnur and J. M. Hellerstein. Eddies: Continuously

adaptive query processing. In SIGMOD, 2000.
[3] M. Bates. User Interface Design, chapter The

Berry-Picking Search. Addison-Wesley, 1990.
[4] P. Bonnet and A. Tomasic. Partial answers for unavailable

data sources. In FQAS, 1998.
[5] L. Bouganim et al. Dynamic query scheduling in data

integration systems. In ICDE, 2000.

[6] J. Chen et al. NiagaraCQ: A Scalable Continuous Query
System for Internet databases. In SIGMOD, 2000.

[7] T. Gaasterland et al. Relaxation as a platform for
cooperative answering. J. Intel. Info. Sys., 1(3/4), 1992.

[8] M. Garofalakis and P. B. Gibbons. Approximate query
processing: Taming the terabytes. In VLDB, 2001.

[9] R. Goldman and J. Widom. WSQ/DSQ: a practical
approach for combined querying of databases and the web.
In SIGMOD, 2000.

[10] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data
cube: A relational aggregation operator generalizing
group-by, cross-tab, and sub-totals. In ICDE, 1996.

[11] L. M. Haas et al. Optimizing queries across diverse data
sources. In VLDB, 1997.

[12] J. M. Hellerstein and P. J. Haas. Online query processing.
In SIGMOD, 2001.

[13] J. M. Hellerstein, P. J. Haas, and Helen J. Wang. Online
aggregation. In SIGMOD, 1997.

[14] Z. G. Ives et al. An adaptive query execution system for
data integration. In SIGMOD, 1999.

[15] N. Kabra et al. Efficient mid-query reoptimization of
sub-optimal query execution plans. In SIGMOD, 1998.

[16] BrightPlanet LexiBot. www.brightplanet.com.
[17] K. A. Morris. An algorithm for ordering subgoals in NAIL!

In PODS, 1988.
[18] A. Motro. Cooperative database systems. Intl. J.nal Intel.

Sys., 11(10), 1996.
[19] J. F. Naughton et al. The Niagara Internet query system.

IEEE Data Engg. Bull., 24(2), 2001.
[20] V. O’day and R. Jeffries. Orienteering in an information

landscape: How information seekers get from here to there.
In INTERCHI, 1993.

[21] S. Raghavan and H. Garcia-Molina. Crawling the hidden
web. In VLDB, 2001.

[22] V. Raman. Interactive Query Processing. PhD thesis,
U.C.Berkeley, 2001.

[23] V. Raman, B. Raman, and J. M. Hellerstein. Online
dynamic reordering. VLDB Journal, 9(3), 2000.

[24] K. Tan, C. Goh, and B. Ooi. Online feedback for nested
aggregate queries with multi-threading. In VLDB, 1999.

[25] The Telegraph project. telegraph.cs.berkeley.edu.
[26] T. Urhan and M. J. Franklin. Dynamic pipeline scheduling

for improving interactive query performance. In VLDB,
2001.

[27] T. Urhan, M. J. Franklin, and L. Amsaleg. Cost-based
query scrambling for initial delays. In SIGMOD, 1998.

[28] G. Zhang et al. Query formulation from high-level concepts
for relational databases. In UIDIS, 1999.

file:www.brightplanet.com
file:telegraph.cs.berkeley.edu

	Introduction
	Background
	Telegraph FFF
	The Need for Partial Results
	Diversity and Volatility of Distributed Data Sources
	Imprecision of Exploratory Web Queries

	Partial Result Generation and Dynamic Query Refinement

	Semantics of Partial Results
	Partial Result Tuples and Intermediate Results
	Implications for the Query Processor
	Composability of Partial Result Tuples
	Choice of Key Columns

	Dynamic Query Refinement
	Specifying Query Refinements
	Benefit of a Partial Result Tuple

	A Query Processor for Generating Partial Result Tuples
	Architecture for Adaptive Ordering
	Policies for Operator and Data Ordering
	Benefit of Sending a Tuple to an Operator
	A First-Cut Routing Policy

	Reordering and Routing Mechanism
	Gauging the Multi-Step Benefits of Routing

	Experimental Results
	Utility of Partial Results: Need for Buffering
	Volatile Sources: Need for Operator Ordering
	Dynamic User Preferences: Need for Data Ordering
	Combining Operator and Data Ordering

	Related Work
	Conclusions and future work
	REFERENCES -9pt

