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ABSTRACT

An emerging challenge in modern distributed querying isffd e
ciently process multiple continuous aggregation querigsiiéa-
neously. Processing each query independently may be ibfeas
so multi-query optimizations are critical for sharing waskross
queries. The challenge is to identify overlapping compatet that
may not be obvious in the queries themselves.

In this paper, we reveal new opportunities for sharing warthie
context of distributed aggregation queries that vary irirteelec-
tion predicates. We identify settings in which a large sej sfich
queries can be answered by executingg ¢ different queries.

The k queries are revealed by analyzing a boolean matrix captur-

ing the connection between data and the queries that thisfysat
in a manner akin to familiar techniques like Gaussian elation.
Indeed, we identify a class tihear aggregate functions (including
SUM, COUNT and AVERAGE), and show that the sharing poten-
tial for such queries can be optimally recovered using steshcha-
trix decompositions from computational linear algebrar §ame
other typical aggregation functions (including MIN and MAXe
find that optimal sharing maps to the NP-haet basigoroblem.
However, for those scenarios, we present a family of heaidgo-
rithms and demonstrate that they perform well for modesited
matrices. We also present a dynamic distributed systenitaceh
ture to exploit sharing opportunities, and experimentalgluate
the benefits of our techniques via a novel, flexible randomkwor
load generator we develop for this setting.

Categories and Subject DescriptorsH.2.4 [Systems]: Distributed
databases

General Terms: Algorithms, Design, Measurement

Keywords: Multi-query optimization, aggregation, linear algebra,
duplicate insensitive

1. INTRODUCTION

There is a large and growing body of work on the design of dis-
tributed query systems. The focus of much of this work hasibee
on the efficient execution of individual, one-shot quertbsough
intelligent data-processing algorithms, data/query [@inip strate-
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gies, etc. Recent years, however, have witnessed the emcerge
of a new class ofarge-scale distributed monitoringpplications

— including network-traffic monitors, sensornets, and foialdata
trackers —that pose novel data-management challenges, rRany
monitoring tasks demand support fayntinuous queriemstead of
ad-hoc requests, to accurately track the current stateeoetivi-
ronment being monitored. Second, given the inherentlyitigied
nature of such systems, it is crucial to minimize toenmunication
overheadhat monitoring imposes on the underlying infrastructure,
e.g., to limit the burden on the production network [5] or texi
mize sensor battery life [16].

In most monitoring scenarios, the naive “warehousing smfit
of simply collecting a large, distributed data set at a @dizted
site for query processing and result dissemination is fittely
expensive in terms of both latency and communication costd- a
often, simply unnecessary. The amount of data involved easob
large and dynamic in nature that it can easily overwhelmdafipi
users or applications with too much detailed informatiamstéad,
high-level,continuous aggregation queriese routinely employed
to provide meaningful summary information on the undedyttis-
tributed data collection and, at the same time, to allow siser
iteratively drill-down to interesting regions of the daf@ypical ag-
gregation queries also allow for effectivi-network processing
that can drastically reduce communication overheads bgHing”
the aggregate function computation down to individual rddethe
network [14].

Another crucial requirement for large-scale distributednitor-
ing platforms is the ability tscalein both the volume of the un-
derlying data streams and the number of simultaneous longing
queries. While there may be many queries in the network, ey
have significant computational overlap either due to thénisic in-
terest of certain streams, or due to “canned” query formskéep
queries narrowly focused. As an example, consider the Né&two
Operations Center (NOC) for the IP-backbone network of gdar
ISP (such as Sprint or AT&T). Such NOCs routinely need tokrac
(in real time) hundreds of continuous queries collectingragate
statistics over thousands of network elements (routericlses,
links, etc.) and extremely high-rate event streams at rdiffelay-
ers of the network infrastructure. This requirement emjzessa
new class of multi-query optimization problems that focuasdy-
namically sharing execution costs across continuousretogeeries
to optimize overall system performance.

Our Contributions. In this paper, we focus on dynamic multi-
query optimization techniques for continuous aggregatjoaries
over physically distributed data streams. In a nutshelldexon-
strate opportunities to computeaggregation queries that vary in
their selection predicates via < ¢ queries that may, in fact, be
different from the input queries themselv&dis surprising result



arises from a formalism that attacks the shared optimingtiob-
lem through the analysis of a dynanfragment matrixthat cap-
tures the connection between observed data and query ateslic
and the algebraic properties of the underlying aggregatetion.
This leads us to algorithmic solutions for these problenoaigded
in linear algebra and novel combinatorial optimizationhteiques.
More concretely, our main contributions can be summarizeila
lows.

e Algebraic Query/Data Decomposition.We identify sharing op-
portunities across different aggregation functions tgiothe anal-
ysis of a dynamichoolean fragment matrithat accurately captures
the disjoint fragments of the streaming data tuples witlpeesto
the underlying selection predicates. The basic intuitierehs that
the set of computed aggregates can be effectively computdnse
decomposinghe fragment matrix intéindependent components”
which are sufficient to reconstruct every individual aggtegan-
swer. The exact notion of an “independent component” vatees
pending on the algebraic characteristics of the underlyggre-
gate (e.g., linear or duplicate-insensitive), resultimngptimization
problems of varying computational complexity.

e Novel Optimization Algorithms for Distributed Aggregate Shar-
ing. Based on our insights from the fragment-matrix model, we
formulate our sharing optimization problems for distribditag-
gregates from different classes of aggregation functidrs: the
class oflinear aggregates (e.gGOUNT, SUM) we show efficient,
optimal sharing strategies based on existiingar-algebra tech-
niques(such as LU, QR, or SVD decompositions). Unfortunately,
duplicate-insensitive aggregates (elgIN, MAX) result in a dra-
matic increase in problem complexity, since the problem srap
the NP-hardSet-Basis Problerfi7] (known to be inapproximable
to within any constant factor [13]); thus, we propose a nafé#
cient heuristic technique that, as our empirical resultaalestrate,
performs well in practice. We also give an analysis of theisiga
benefits.

e Implementation Details: Dynamics and Complex Queries.
We address the challenges of ensuring efficient global opaim
tion across many nodes in a distributed environment, evetats
may be changing locally. This involves a simple lightweighn-

chronization protocol that passes messages along theseepath
of the distributed aggregation. We also show how our resalitsbe
applied to richer query mixes as a complement to other nowiéry

optimization approaches.

e Extensive Experimental Results Validating our Approach.We
develop a flexible workload generator for our problem thédves
us to explicitly and flexibly control the degree of benefititalale in
the workload. Via extensive simulation results, we cleaiéynon-
strate that our algorithms can provide dramatic commuitnatav-
ings. For linear aggregate functions, two of our theordtieaptimal
methods achieve 100% of the potential benefit under allnggsti
despite the potential for numerical instability in floatipgint com-
putations; instabilities in the third technique reduceeifective-
ness in some cases. For duplicate insensitive aggregheebest
of our methods approaches 90% of optimal across a wide range o
workloads. In addition to the analytical simulation nuntere
also demonstrate the communication savings of our metbggiol
in a full implementation in the PIER distributed query ergg[9],
running on an experimental cluster.

Prior Work. [17] and similar work focus on select/project/join
queries. Contrastingly, our work only addresses aggregati

For the case of aingledistributed aggregation query, efficient
in-network execution strategies have been proposed byalewe

cent papers and research prototypes (including, for iestafAG [14],
SDIMS [20], and PIER [9]). The key idea in these techniques is
to perform the aggregate computation over a dynamic treenin a
overlay network. Aggregation occurs over a dynamic treghwi
each node combining the data found locally along with Bastial
State Records (PSR&)receives from its children, and forward-
ing the resulting PSR one hop up the tree. Over time, the tree
dynamically adjusts to changing node membership and n&twor
conditions. More recent work on distributed data streantiag
demonstrated that, with appropriate PSR definitions andoatan
tion techniques, in-network aggregation ideas can be dgtho
fairly complex aggregates, such as approximate quantéles]
and approximate histograms and join aggregates [3]. Notteese
earlier papers considers the case of multiple distribugeplegation
queries, essentially assuming that such queries are eddsdi-
vidually, modulo perhaps some simple routing optimizagiofor
example, PIER suggests using distinct routing trees fdn gaery

in the system, in order to balance the network load [9].

In the presence of hundreds or thousands of continuous -aggre
gation queries, system performance and scalability depgach
effective sharing of execution costs across queries. Regerk
has suggested solutions for tbentralizedversion of the problem,
where the goal is to minimize the amount of computation ivedl
when tracking (1) sever&ROUP-BY aggregates (differing in their
grouping attributes) [21], or (2) several windowed aggtegddif-
fering in their window sizes and/or selection predicatds), [11],
over a continuous data streavhserved at a single sitén the dis-
tributed setting, network communication is the typicaltlesteck,
and hence minimizing the network traffic becomes an importan
optimization concern.

In an independent effort, [19] has proposed a distributdd-so
tion for the sub-problem we term “linear aggregates” in {raper.
Their scheme is based on heuristics tailored to power-cainsid
sensornets where the query workload is restricted $tatic col-
lection of simple spatial predicates related to the netviopiology.
Instead, our dynamic fragment-based method does not have an
restrictions on the query predicates, and employs optiinaht-
algebra techniques to uncover sharing across linear aggeglhey
also observe the analogy to the Set-Basis problermIwyMAX ag-
gregates but do not propose any algorithmic solution fodth@icate-
insensitive case.

2. OVERVIEW

The goal of the algorithms we present in this paper is to mizem
overall network communication. During an aggregation gueach
node must send a partial state record (PSR) to its parent agan
gregation tree. If there is no sharing, then we are commtiniga
one partial state record (PSR) per node per query per windove
haveq queries, our goal is to only seridPSRs per node per win-
dow, wherek < ¢, such that thé&: PSRs are sufficient to compute
the answer to alf queries. The next section discusses the intuition
for how to select thesk PSRs.

2.1 The Intuition

Consider a very simple example distributed monitoring esyst
with n nodes. Each of the nodes examines its local stream of
packets. Each packet is annotated with three boolean va(ligs
whether there is a reverse DNS entry for the source, (2) ifthece
is on a spam blacklist, and (3) if the packet is marked suspscby
an intrusion detection system (IDS). One could imagineoveriap-
plications monitoring alk streams at once by issuing a continuous
query to count the number of global “bad” packets, where @ach
son determines “bad” as some predicate over the three flagie H



are example query predicates from five COUNT queries over the
stream of packets from all the nodes:

1. WHERE noDNS = TRUE
. WHERE suspicious = TRUE
. WHERE noDNS = TRUE OR
. WHERE onSpamBlackList

. WHERE onSpamBlackList
AND suspicious = TRUE

suspicious = TRUE
TRUE
TRUE

a b~ wN

We use an idea from Krishnamurthy et al. [10] to get an insight
for how to execute these queries using fewer than 5 PSRsein th
work, they look at the set of queries that each tuple in theastr
satisfies, and use this classification to partition the tgplece to
minimize the number of aggregation operations (therebycidy
computation time). Returning to our five example queriesvabo
suppose in a single window at nodeve have tuples that can be
partitioned into exactly one of the following five categarie

1. Tuples that satisfy queries 1 and 3 only
. Tuples that satisfy queries 2 and 3 only
. Tuples that satisfy query 4 only
. Tuples that satisfy queries 1, 3, and 4 only
. Tuples that satisfy queries 2, 3, 4 and 5 only

a s~ wN

We will refer to each of these categories asagment As a com-
pact notation, we can represent this ag a«(q) booleanfragment
matrix, F', with each column representing a query (numbered from
left to right) and each row representing a fragment:

Query 1| | Query 5
1 01 00 «— Fragment 1
01 1 0 0
F=|100 010
1 01 10
01 1 1 1 «— Fragment 5

Now, suppose in a given window some nadeceives a number
of tuples corresponding to each fragment; e.g., it recéd@tsiples
satisfying queries 1 and 3 only (row 1), 43 satisfying quefend
3 only (row 2), etc. We can also represent this as a matrixedall

Z AT=1[23 43 18 109 13 ]

Given the two matrices, we can now compute the local count
for the first query (the first column af') by summing the first and
fourth entries inA;, the second query by summing the second and
fifth entries inA;. In algebraic formA] x F will produce a one-row
matrix with each column representing the count for the retpe
query. Encoding the information as matri is not more compact
than sending the traditional set of five PSRs (one for eachyjjue
However, if we can find a reduced matrik; — one with empty
entries that do not need to be communicated — such Afatx
F = A] x F, we can save communication at the expense of more
computation.

This is indeed possible in our example. First, note thatrfrewt
4 is the OR of thenon-overlappingfragments 1 and 3 (i.e., their
conjunction equals zero). Now, observe the significanchatffact
with respect to computing our COUNT queries: when summing up
the counts for those queries that correspond to fragmenudri@s
1 and 3), we can ignore the count of fragment 3 since its entrie
for those queries are zero. Similarly, when summing up thento
for queries overlapping fragment 3 (query 4), we can ignbee t
count of fragment 1. Because of this property, we can adddbetc
associated with fragment 4 intith of the counts for fragments 1
and 3 without double-counting in the final answer, as follows

AT =[234109=132 43 18+109=127 109—0 13 |

Using this newA’, A" x F will still produce the correct answer
for each query, even though' has more empty entries. And, since
A’ has a zero entry, there is a corresponding savings in network
bandwidth, sending only four PSRs instead of five. In essemee
only need to execute four queries instead of the original fiuee
key observation is that the size df; is equal to the number of
independent rowin F', or therank of F'; the exact definition of
independence depends on the aggregation function as wesdisc
next. In all cases, the rank &f will always be less than or equal to
min(f, q). Therefore we will never need more tha®SRs, which

is no worse than the no-sharing scenario.

2.2 Taxonomy Of Aggregates

The particular optimization presented in the previousieadbased
on ORing non-overlapping fragments) works for all disttilee and
algebraic aggregate functions. However, some aggregattidns
have special properties that allow more powerful solutitmbe
used that exploit additional sharing opportunities. Weegatize
aggregates into three broad categoriésear, duplicate insensi-
tive, andgeneral These three categories map to different variations
of the problem and require separate solutions. We first disthe
taxonomy and then briefly introduce our solutions.

Formally, we use the teriiinear for aggregate functions whose
fragment matrix entries form &eld (in the algebraic sense) un-
der two operations, one used for combining rows, the other fo
scaling rows by constants. An important necessary property
field is that there bénversesfor all values under both operators.
Among the familiar SQL aggregates, note that there is noraktu
inverse for MIN and MAX under the natural combination opera-
tor: given thatz: = MAX (z,y), there is no uniqug " such that
MAX (2,4~ ') = z. Hence these are not linear. Another category
we consider arduplicate insensitivaggregates, which produce the
same result regardless of the number of occurrences of afispec
datum. The table below lists a few example aggregate funstior
each category:

Non-linear Linear
Duplicate | k-MAX, k-MIN SUM, COUNT, AVER-
Sensitive AGE
Duplicate | MIN, MAX, BLOOM | Spectral Bloom filters [2],
Insensitive| FILTER, logical AND/OR | Set expressions with upr
dates [6]

The intuition for why k-MAX and k-MIN (the multi-set of the
top k highest/lowest datums) are non-linear is analogous to that
of MAX and MIN. k-MAX/MIN are also duplicate sensitive since
evaluating each additional copy of the same highest datunidvo
expel thekth highest datum due to the multi-set semantics.

Spectral Bloom filters are an extension of Bloom filters thesk
a frequency associated with each bit. The frequency isimertded
when a datum maps to that bit, and can be decremented when a da-
tum is removed from the filter. This is linear because thedesgy
cies can be added/subtracted to each other and can be sgaded b
real number. In addition, the output of the filter is based detler
the frequency is greater than zero or not, so counting theshan
tum twice may produce an inflated frequency value but does not
change the output.

In Section 4, we address linear aggregates where this prnoble
can be reduced directly to rank-revealing linear algebctoféza-
tion of matrix ', and polynomial-time techniques from the litera-
ture directly lead us to an efficient solution. For duplicateen-
sitive aggregates, we explain in Section 5 that the problera i
known NP-hard problem and has higher computational complex
ity; in these cases, we develop a family of heuristics thaewad-



uate experimentally. Finally, for aggregates that areheeitinear
or duplicate insensitive, the most conservative optinniraglgo-
rithm must be used. We stress that for both linear and duglica
insensitive aggregates, our solutions will never requicgerglobal
aggregate computations than the no-sharing scenario.

We now discuss our system architecture and our general@olut
to this problem.

2.3 Architecture

The general technique for performing our multi-query optiaa
tion has four phases. First, at each noideyve need to create the
initial F' and A; matrices in thdragmentationphase. Second, we
candecomposéd” and A4; into a smallerA;. Third, we perform
the global aggregationof all local A;'s across all nodes. Finally,
we canreconstructthe final answers to each query at some npde
This process is illustrated in Figure 1 and described inidlegtow.

In the first phase, fragmentation, we are using the same tech-

nique presented in [10]. Each tuple is locally evaluatedresg@ach
query’s predicates to determine on-the-fly which fragmeatttiple
belongs to. We can use techniques such as group filters [¥5} to
ficiently evaluate the predicates. Once the fragment israéted,
the tuple is added to the fragment’s corresponding local RSR.

In the second phase, decomposition, each node will locpfilya
the decomposition algorithm t8 and A; to produce a smaller ma-
trix, A;. The specific decomposition algorithm used is dependent
on the type of aggregate function being computed. In Se&iove
present the basic algorithm that applies to all functiorescti®n 4
shows an algorithm that can be used for linear aggregateitunsc
and, in Section 5, we show a family of heuristic algorithmatth
work for duplicate insensitive functions.

We require that every node in the system use the sEmm®trix
for decomposition. Thé' matrices must be the same so that every
entry in A; has the same meaning, or in other words, contains a
piece of the answer to same set of queries. Nodes that do wet ha
any tuples for a particular fragment will have an empty PSR.in
In Section 8, we explain how to synchronizeon all nodes as data
is changing locally; for duplicate insensitive aggregatections,
we are able teliminate this requirement altogether

In the third phase, global aggregation, we aggregate eattreof
Al’s over all nodes in the system to produce the glathal Since
we want to maintain the load balanced property of the nomistpa
case, we aggregate each entry/fragmemt/iseparately in its own
aggregation tree. Once the final value has been computechfor a
entry of A’ at the root of its respective aggregation tree, the PSR is
sent to a single coordinator node for reconstruction.

The fourth phase, reconstruction, begins once the codatina
node has received each of the globally computédentries. Us-
ing the I matrix (or its decomposition) the answer to all queries
can be computed. The reconstruction algorithm is relatethe¢o
specific deconstruction algorithm used, and is also desdripthe
respective sections.

We take a moment to highlight the basic costs and benefits of
this method. Both the sharing and no-sharing methods mast di
seminate every query to all nodes. This cost is the same fibr bo
methods and is amortized over the life of the continuousyu@ur
method introduces the cost of having all nodes agree on the sa
binary F' matrix, the cost to collect all of the” entries on a single
node, and, finally, the cost to disseminate the answer to eadé
that issued the query. The benefit is derived from execugmgef
global aggregations (in the third phase). The degree offtiénde-
pendent on the data/query workload. In Section 8, we amaljyi
show for which range of scenarios our method is beneficial.

3. GENERAL DECOMPOSITION SOLUTION

Ouir first algorithm, basic decomposition, applies to allragg-
tion functions, and directly follows the intuition behindet opti-
mization we presented in the previous section. Our aim isni fi
the smallest set of basis rows, such that each row is exdetlglis-
junction of two or more basis rows that are non-overlappirej,
their conjunction is empty. If the basis rows were to overliyen
a tuple would be aggregated multiple times for the same query

Formally, we want to find the basis rows i under a limited
algebra. Standard boolean logic does not allow us to exphess
requirement that basis rows be non-overlapping. Insteadcam
define an algebra using a 3-valued logic (with values of Ondl,/a
for “invalid”) and a single binary operator called ONCE. Tow&put
of ONCE is 1 iff exactly one input is 1. If both inputs are 0, the
output of ONCE is 0, and if both inputs are 1 the output.i€Jsing
this algebra, the minimal set of rows which can be ONCEd tmfor
every row inF' is the minimal basis set, and our target solution.
The I value is used to prevent any tuple from being counted more
than once for the same query.

The exhaustive search solution is prohibitively expensbiece
if each row isq bits there are2>’ possible solutions. While this
search space can be aggressively pruned, it is still toe IgEyen
a greedy heuristic is very expensive computationally, esitieere
is a total of2? choices (the number of possible rows) at each step
— simply enumerating this list to find the locally optimal at®is
clearly impractical.

To approach this problem, we introduce a simple heuristit th
attempts to find basis rows using the existing rowsin Given
two rows,: andj, if j is a subset of thenj is covering those bits
in ¢ that they have in common. We can therefore decompdee
remove those bits that are in common. When we do that, we need
to alter A by adding the PSR fronis entry toj’s entry.

We can define a BcoMPOSEOperation as:

DECOMPOSKF, A;, i, j):
if (i # j) AND (= F[i]& F'[j] = 0) then\\ ONCE(F[i],F[J])
F[i] = F[i{JXORF[j]
Ailj] = Alj] + A[d]
else returninvalid

A simple algorithm can iteratively apply EcoMPOSEUNtil no
more valid operations can be found. This decompositionrélga,
will transform F and A; into F/ and A’

BAsIC DECOMPOSITIONF), A;):
boolean progress = true
while progress = true
progress = false
for all rowsi € F
for all rowsj € F'
if Decomposef, A;, i, j) # invalid
then progress = true
for all rowsk € A;
if |[F'[k]] = 0then
A;[k] = 0\\ rows in F with all 0’s

Reconstruction is straightforward singd"” x F’ = A] x F.
The running time of the basic decomposition algorith®{g®),
wheref is the number of rows iff". Since the basic decomposition
is searching a small portion of the search space, it is nate®p to

produce the smallest basis set. Furthermore, it is the dgbrithm
we present that can produce an answer worse than no-sh@tieg.
algorithm starts withf basis rows, wherg can be greater thag
and attempts to reduce the size of this initial basis. Thisicgon
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Figure 1: Tuples are first aggregated by fragment (1) into a locald; PSR. F and A; are then decomposed (2) to formA/. Each entry in A/ is then
aggregated over all nodes (3) in separate aggregate treeshéfinal global value for each entry in A’ sent to some nodg. Node; can then reconstruct

(4) the answers to every query and distribute the result.

may not always be sufficient to find a basis that is smaller tiran

decompositions. These algorithms will decomp@s@to two or

equal tog (although one such basis must exist). In these cases wemore matrices that can be used in local decomposition tsfiam

revert to ag x ¢ identity matrix which is equivalent to a no-sharing
solution. However, this simple algorithm does provide aftation
for our other solutions.

LINEAR AGGREGATE FUNCTIONS

If the aggregate function is linear, such as COUNT, SUM, ofr AV
ERAGE, we are no longer constrained to using the limitedtaige
from the previous section. Instead, we can treat the mairiises
as real numbers and use linear algebra techniques akin tss@au
Elimination, adding and subtracting rowskhfrom each other, and
multiplying these rows by scalars. Our goal of reducing tlze sf
A; can therefore be accomplished by finding the minimal set of
linearly independent rows” in F, or the rank ofF’. By defini-
tion ' can be reconstructed froi’, so we can creatd from A;
at the same time and still correctly answer every query duitire
reconstruction phase.

4.

For example, suppose we are calculating the COUNT for these

five queries with this” and A; matrix:

11011 13
1 0 1 0 54
F=]10 1110 [A=]|24
1 1.0 0 0 78
11110 32

The answer to the first query (in the leftmost column)dst 54 +
78 + 32 or 177. The complete solution matrix can be computed
usingA] x F.

It turns out that we can expregsand A; using only four rows:

11 1 1 0 177
, o1 1 1 0ol | -3
F=1090 -1 -1 0% 37

00 0 1 1 13

Using F’ and A} we can still produce the correct solution matrix,
using A’" x F’. In this example we used Gaussian Elimination on
F to find the smallest set of basis rows. We will now discuss how
to solve this problem using more efficient algorithms.

In numerical computingrank-revealing factorizationare used
to the find the minimal set of basis rows. We will apply three
well-studied factorizations to our problem: the LU, QR, &¥D

A; into A} and then to reconstruet’ into the query answers at the
coordinator node. These factorization methods and thgilemen-
tations are well studied in the numerical computing literat[1].
We now present formulations for utilizing these factoringthods.

An LU algorithm factorsF' into a lower triangular matrixt. and
an upper triangular matri¥/ such thatL x U = F'. In the de-
composition phase we can ford{ usingA] x L and remove any
entries in A whose corresponding row iff is composed of all
zeros. Reconstruction at the coordinator is simglyx U. We
can safely remove the entries itf whose corresponding row ih
is all zeros because in reconstruction those entries wilhgs be
multiplied be zero and thus do not contribute to any reslitging
reconstruction we insert null entries i as placeholders to insure
the size ofA’ is correct for the matrix multiplication.

Using QR factoring is very similar to using LU. In this case,
the QR algorithm factorg” into a general matrixQ and an upper
triangular matrix R such thatQ) x R = F. We form A} using
AT x @ and remove any entries i} whose corresponding row in
R is composed of all zeros. Reconstruction is accomplishadjus
A" X R.

SVD factorsF into three matriced/, S, andVT. A’ is formed
in decomposition usingl] x U x S. Using this method, we re-
move entries fromA, whose corresponding row ifi is zero. Re-
construction is accomplished by computing the productiofind
VT, With all three algorithms, the factorization éf is determin-
istic and therefore the same on all nodes, allowing us toeagde
A’s from all nodes before performing reconstruction.

These algorithms all have a running time@fm x n*) wherem
is the size of the smaller dimension Bfandn is the larger dimen-
sion. In addition, all three methods would be optimal (fimdthe
smallest basis set and thus reducifiggnd A; to the smallest pos-
sible sizes) using infinite precision floating point arithimeHow-
ever, in practice these are computed on finite-precisionpeens
which commonly use 64 bits to represent a floating point numbe
Factorization requires performing many floating point riplita-
tions and divisions which may create rounding errors thatfar-
ther exacerbated through additional operations. While attdr-
ization is especially prone to the finite precision problépR fac-
toring is less so, and SVD is the least likely to produce sptinzal
reductions inA’’s size. Due to this practical limitation, the fac-



torization may not reach the optimal size. In no case will ahy
these algorithms produce an answer that requires more Ighgba
gregations than the no-sharing scenario. In additiongth@snding
error may introduce errors i’ and therefore perturb the query re-
sults. However, these algorithms, in particular SVD, anesidered
robust and used in many applications.

5. DUP-INSENSITIVE AGGREGATES

The previous algorithms preserve the invariant that eapletu
that satisfies a particular query will be aggregated examike for
that query. However, some aggregate functions, such as MtN a
MAX, will still produce the same answer even if a tuple is aggr
gated more than once. We can take advantage of this propkely w
decomposind” and achieve a higher communication savings com-
pared to the previous algorithms. Consider this simple @tam

11 0 11

10110 11 01 1

F:01110F’:10110

01 110

11000 11000
11110

We notice that the fifth row of” is equal to the OR of the sec-
ond and third (or second and fourth, or third and fourth). §iue
can define a matri¥™’ that removes this redundant row. The cor-
responding operation to thé matrix is to aggregate the fifth entry
with the second entry, aggregate the fifth entry with thedtlintry,
and then remove the fifth entry. Intuitively, this is movirgetdata
from the fifth fragment to both the second and third fragments

Similar to the previous sections, the goal is to find the mimm
number ofindependent rowsBut in this case, the independent rows
are selected such that all rows ifhican be obtained by combining
rows in the basis using only the standard OR operation, ratlae
ONCE.

This problem is also known as treet basisor boolean basis
problem. The problem can be described succinctly as follows
Given a collection of set§' = {51, S2,...Ss}, a basisB is de-
fined as a collection of sets such that for e&Ghe S there exists
a subset ofB whose union equals;; the set basis problem is to
find the smallest such basis set. Our problem is the same gwher
S = rows of F' and B = rows of F’. The set of possible basis
sets is22" wheren is the number of elements | S. This prob-
lem was proved NP-Hard by Stockmeyer [18], and was later show
to be inapproximable to within any constant factor [13]. Tar o
knowledge, ours is the first heuristic approximation altyon for
the general problem. In [12] Lubiw shows that the problem can
be solved for some limited classesBfmatrices, but these do not
apply in our domain.

As with the general decomposition problem in Section 3, the
search space of our set basis problem is severely expohéantia
q. To avoid exhaustive enumeration, our approach for findivey t
minimal basis set["”, is to start with the simplest basis setj & ¢
identity matrix (which is equivalent to executing each quieide-
pendently), and apply transformations. The most intuitig@sfor-
mation is to OR two existing rows if”, i andj, to create a third
row k. Using this transformation (and the ability to remove rows
from F’) one could exhaustively search for the minimal basis set.
This approach is obviously not feasible.

We apply two constraints to the exhaustive method in order to
make our approach feasible. First, after applying the ORsfia-
mation, at least one of the existing rowsor 7, is always imme-
diately removed. This ensures that the size of the basisesetrn
increases. Second, we maintain the invariant that aftdr gaos-
formation the set is still a valid basis &f.

We can now formally define two operations . BND and GoL-
LAPSEwhich satisfy these invariants. Given a matfixand a basis
F’ for F, both operations overwrite a rof’ [;] with the OR of row
F’[i] and another row”'[j]. CoLLAPSEthen removes rowy from
F’', whereas BEND leaves row; intact. After performing one of
these operations, if the new’ still forms a basis forr' then the
operation is valid; otherwise the original is kept.

CoLLAPSEIs the operation that achieves a benefit, by reducing
the size of the basis set by one.0Q APSE is exploiting the co-
occurrence of a bit pattern i'. However, it may not be valid
to apply GOLLAPSE until one or more REND operations are per-
formed. The intuition for this is that when the bit patternsome
input row can be used in multiple basis rows,EID preserves the
original row so that it can be used as, or part of, anothershasy.
Consider matrixF', and the followingnvalid CoLLAPSE transfor-
mation:

011 1 1000
100 1
100 1|, 0100
F—1111F_0010_’8(1J?8
010 1 0001

We cannot directly @ LLAPSE rows one and four i as shown
above. The resulting”’ is no longer able to reconstruct the first
or fourth rows inF' via any combination of ORs; we call such a
transformation “invalid”. However, if we first BEND rows two
and four (leaving row four), we can thenoCLAPSErows one and
four, as shown next:

0

10 0 10 0 0
Fl_0100*>0101—>(]5281
{0 0 1 0 00 10 00 1 0

0 0 01 0 0 01

Using these two operations we can search a subset of the over-
all search space for the minimal basis set. A simple seag al
rithm, called Bxsic CompPosITION performs BEEND or COL-
LAPSEin random order until no more operations can be executed.
The pseudo-code is shown below:

BAsic COMPOSITIONF)
F' = gxq identity matrix
boolean progress = true
while progress = true
progress = false
for all rowsi € F’
for all rowsj € F’
if i # j then
if COLLAPSE(F, F', 4, j) #invalid then
progress = true
break to while loop
if BLEND (F, F', i, j) #invalid then
progress = true
break to while loop

A’ can be calculated by aggregating together each elemeht in
that corresponds to a row it which is equal to or a superset of the
A’ entry’s corresponding” row.

There are three key limitations of this algorithm:

e Once an operation is performed it can not be undone: both
operations are non-invertible and there is no back-tragkin
This limits the overall effectiveness of finding the minimal
basis set since the algorithm can get trapped in local minima



e The random order in which operations are performed can de-
termine the quality of the local minimum found.

e At any given point there ar®(f?) possible row combina-
tions to choose from. Finding a validd@LAPSE or BLEND
is time consuming.

In effect, the algorithm takes a single random walk througgh t
limited search space. For some workloads, the optimal isolut
may not even be attainable with this method. However, whiie t
heuristic algorithm gives no guarantees on how small théslszs
will be, it will never be worse than the no-sharing solutidve will
show in Section 7 that this heuristic is often able to find 5006 o
the achievable reductions in the size of the basis set, $uitiining
time is extremely long.

Refinements. Our first refinement takes a slightly different ap-
proach. Instead of optimizing every query at once, we ine@m
tally add one query at time optimizing as we go. The two key ob-
servations are (1) that a valid covering fpr- 1 queries can cover
q queries with the addition of a single row which only satisfies
new query and (2) the optimal solution fgiqueries given an opti-
mal basis solution fog — 1 queries and the single basis row for the
gth query will only have up to one valid @ LAPSEoperation.

Using these observations we can define tl®ACOMPOSITION
algorithm which incrementally optimizes queries one atreeti

ADD COMPOSITIONF, F', start)
Require: I’ hasstart columns

let ¢ = the number of queries\ columns inF’

let f = the number of row§\ rows in F’

for ¢ = start + 1upto ¢
ExpandF’ to (f + 1) x c with 0's
F/[f +1][d =1
F. = Project{,c) \\ See Following Algorithm
OptimizeF.,F',f + 1)

return F’

PROJECT(S, colummns)
for all rowsi € S
for all colsj € S
if j <columns then
S”[il) = St
elseS"[i][j]=0
S’ = unique rows inS”
return S’

The OpTIMIZE step in ADD COMPOSITIONIS very similar to
the repeat loop in Bsic COMPOSITION It has asearch loopthat
continues looking for combinations of rows that can be used i
CoLLAPSE or BLEND operation until there are no such combina-
tions. OPTIMIZE has two key improvements over the8ic Com-
POSITION First, CoLLAPSES and B.ENDs are not considered if
they combine two old (optimized) rows. Second, since onlg on
row was added td®’, once a @LLAPSE is performed the opti-
mization is over and the search loop is stopped, since naiadal
CoLLAPsEs will be found. As shown in Section 7 this method
is considerably faster and still equally effective at firglisa small
basis set compared to the Basic Composition algorithm.

We consider three dimensions for search loop strategies:

e Number of operations per iteration:

— O: Perform only one operation per search loop and then
restart the loop from beginning.

— M: Perform multiple operations per search loop only
restarting after every combination of rows are tried.

e Operation preference:

— A: Attempt CoLLAPSE first, but if not valid attempt
BLEND before continuing the search.

— R: Perform all @LLAPSES while searching, but delay
any BLENDs found till the end of the search loop.

— S:Firstsearch and perform onlydl LAPSEOperations,
then search for and perform any. BNDs. This requires
two passes over all row pairs per loop.

e Operation timing:

— W: Execute operations immediately and consider the
new row formed in the same loop.

— D: Execute operations immediately but delay consider-
ing the new row for additional operations till the next
loop.

— P: Enqueue operations till the end of the search loop
and then execute all operations.

The Basic ComposiTIONalgorithm shown uses the O/R strat-
egy. The algorithm performs one operation per iteratiomefdauter
loop. So after each operation, it will begin the search a@@im
the beginning. The algorithm favorsaCLAPSEDby attempting that
operation first. The operator timing dimension is not refévar
strategies that only perform one operation per iterationteNhat
the Basic CompPosITIONcan be modified to use any of the pos-
sible search strategies. In the evaluation section we drdwghe
strategy that performed the best in our experiments, M/A/W.

There are only twelve search strategies possible usinchtiee t
dimensions evaluated (when performing only one operatien p
search loop, operation timing is not relevant). All twelve &x-
perimentally evaluated in Section 7.

6. POTENTIAL GAINS

Before we evaluate the effectiveness of our techniquesriexpe
mentally, we explore the analytical question of identifyguery/data
workloads that should lead to significant beneficial sharigd
quantifying that potential benefit. This will provide us arfnrework
for evaluating how close our “optimization” techniques @to a
true optimum. In this section, we show that there are casesavh
sharing leads to arbitrarily high gain, given a sufficientrer of
queries. We present two constructions, one designed fdicdi
insensitive query workloads, the other for duplicate s@resivork-
loads. Our goal is to construct a workload that maximize strea-
ing or benefit potential. We define the total gai, as:

G: = 1 — (# aggregates executed# queries answergd

We also define the fragment gain which is the gain over comguti
each fragments as:

Gy =1 — (# aggregates executed# fragment$

The total gain(., is the most important metric, since an effective
decomposition algorithm can translate this sharing pakinto a
proportional amount of network bandwidth savings. The riiagt
gain,G is the benefit over computing every fragmentfin

6.1 Duplicate Insensitive

To maximize the sharing potential we start witlbase queries
(b1, b2, bs, ...by) and data that satisfies every conjunctive combina-
tion of theb queries({b1}, {b2}, {bs}, ... {b1,b2},{b1,b3}, ...

{b1, b2, b3, ..., bp}) such that we have® — 1 fragments (the-1
is for data that satisfies no queries). At this stage, no syas
beneficial since only aggregates are actually needed (one for each

query).



(b)

Figure 2: Example Venn diagrams for duplicate insensitive construc-
tion (a) and the duplicate sensitive construction (b). In (2the addi-
tional query b1 U bz is outlined. In (b) the additional query b1 Uci Uca
is outlined.

Using the initialb queries, we can write an additiorzfl — 1 — b
queries by combining them vidisjunction i.e. queryz matches
data that satisfies queby andb2, queryy matches data satisfying
b2 or bs, etc. One such additional query is outlined in Figure 2(a).
In this case there a® such combinations from which we subtract
the originalb queries and the combination that is the disjunction of
the empty set of queries. The additional queries do not dioite
any additional fragments.

These new2® — 1 — b queries can be answered if we have the
answers to the origindl queries. Since the aggregate functions we
consider here are duplicate insensitive, the disjunctiomudtiple
queries is simply their aggregation. So if we compute the&gg
gates for the original queries, we can clearly answer the origibal
queries plus the ne® — b — 1 queries for a total o2® — 1 queries.
Thus,G: = Gy = 1 — . Asb — oo the gain approaches
which is maximal.

The intuition behind this construction is that queries tua the
disjunction of other queries lead to sharing opportunitidile the

query from theh base queries. For example, we take/b;, caUbo,

c1 Uca Uby ander U c2 U b, etc. One such additional query is
outlined in Figure 2(b). Since each of these additional igseis
only the disjunction of one query fromy there is still no overlap,
so no data is counted multiple times.

In summary we havé+ ¢ +2° — 1 — ¢+ (2° — 1) x b queries
which could be answered usibgt ¢ fragments. This leads to a
total gain ofl — =—¢=—, and fragment gain of — 3£ As
b andc approach infinity, the total and fragment gains approach
which is maximal.

Intuitively, the ¢ queries are the source of sharing, since we are
able to construct many additional queries that are the miisjon
of multiple basec queries. Theb queries are the source of the
fragment gain, since the overlap they create increasesuimber
of fragments that are not needed.

7. EXPERIMENTAL EVALUATION

In this section we evaluate the performance of the various de
composition methods we have presented. Rather than focas on
specific workload from a speculative prototype system, wesyse
an experimental methodology that allows us to map out a range
of possible workloads, and we evaluate our techniques si¢hag
range.

We present a random workload generator based on our analysis
of the gain potential in the previous section. This generafiows
us to methodically vary the key parameters of interest inuata
ing our techniques: the workload size, and the degregoténtial
benefit that our techniques can achieve. Within variousnggstof
these parameters, we then compare the relative costs aefitber
our different techniques. After describing our workloadhgeator,
we present our experimental setup and our results.

7.1 Workload Generators

We designed a workload generator that allows us to input the
desired sizeandtotal gainfor a testF” matrix. By controlling the
total gain we are able to test the effectiveness of our alyos.

first b base queries have significant amount of overlap, the overlap Using the combination of the two knobs we can explore various

is not precise creating additional fragments. It should dted that
none of the2® — 1 fragments created from tHebase queries are
actually used to answer any queries, insteadhthase queries are
computed directly and used to compute the additi®ia- 1 — b
queries. This is only possible because the aggregatiortifunsc
are duplicate insensitive and the overlap in data betwesbh lase
queries does not affect the answer for the additional gsierie
Furthermore, itis not necessary that thease queries are explic-
itly requested by users. If only the additional queries wisseied,
those queries could still be answered using jugiobal fragments.
This means that the gain is realized when the query set ighast
disjunction of a smaller number of overlapping fragments.

6.2 Duplicate Sensitive

This construction is similar to the previous constructiaiith b
base queries aritf — 1 fragments. Now we addnon-overlapping
queries such that data that satisfies one ot tipgeries and does not
match any other query (frohor ¢). Thus, there are additional
fragments for a total o6 + ¢ fragments.

We now add2® — 1 — ¢ additional queries based solely on the
non-overlapping queries by taking the disjunction of eyaogsible

workloads. We have two generators, one for duplicate seasit
aggregates and one for duplicate insensitive aggregatgs;reate
test F' matrices. The constructions from the previous section are
used to develop these generators.

For the duplicate insensitive generator we can calcul@&etim-
ber of basis rowsb, the number of fragments;, and the number
of queriesg based on the desired matrix size and gain. Each of the
b basis rows maps to one of tliebase queries in the constructor.
Instead of generating all® — 1 fragments, we uniformly at ran-
domly select thef fragments from the set of possible fragments.
Analogously, we uniformly at randomly select unique actufitil
columns (queries) from the set of up26 — b — 1 possible addi-
tional queries. The generation is finalized by randomly peating
the order of the rows and columns.

This construction gives us a guarantee on the upper bound for
the minimum number of basis rows need&dThe optimal answer
may in fact be smaller if the rows selected from the se2’of- 1
can be further reduced. Since the rows are chosen randounaly, s
areduction is unlikely. In our experiments, we attempt teathfor
any reduction using the most effective algorithms we have.

The duplicate sensitive generator works much the samepexce

combination of thec queries. These queries can be answered by with the addition of thec basis rows. The additional columns

aggregating the answers from the originajueries. Note, this does
not count any tuple twice since theueries were non-overlapping.

We also add2¢ — 1) x (b) more queries by taking the disjunc-
tion of every possible combination of thejueries and exactly one

(queries) are generated by ORing a random combination of the
base queries and up to one of théase queries. Values for the
number ofb andc queries are randomly chosen such that their sum
is the desired number of basis rows and suchligtarge enough



to ensure enough bitmaps can be generatedcasdarge enough
that enough combination of queries can be generated.

Also note that the origindl (andc) queries remain in the test ma-
trix for both generators; while this may introduce a biashia test,
we are unable to remove these queries and still provide ameas
able bound on the optimal answer. Without knowing the optima
answer it is hard to judge the effectiveness of our algorithm

7.2 Experimental Setup

We have implemented in Java all of the decomposition algo-
rithms presented in the previous sections. Our experimerts
run on dual 3.06GHz Pentium 4 Xeon (533Mhz FSB) machines
with 2GB of RAM using the Sun Java JVM 1.5.06 on Linux. While
our code makes no specific attempt to utilize the dual CPUs, th
JVM may run the garbage collector and other maintenances task
on the second CPU. All new JVM instances are first primed with
a small matrix prior to any timing to allow the JVM to load and
compile the class files.

Furthermore, we have also implemented our techniques on top
of PIER [9], a DHT-based P2P query processor running on an ex-
perimental cluster. This has enabled us to verify the benefibur
approach in a realistic setting, over a large-scale disteith query
processing engine.

For the LU/QR/SVD decompositions we utilize the JLAPACK
library, which is an automatic translation of the highly iopzed
Fortran 77 LAPACK 2.0 library. We also tested calling the tirzm
library from C code. Our results showed that the Java vergsias
about the same speed for the SVD routines (in fact slighdyefa
in some instances) while the more optimized LU and QR rostine
were about twice as slow on Java. Overall, the runtime difiees
are minor and do not effect our conclusions on relative spwed
effectiveness so we only present the results from the Jagiove

We employ three key metrics in our study: (1) tledative effec-
tiveness(which is equivalent to the relative decrease in network
bandwidth used for computing the aggregates), (2) rthing
timesof the decomposition routine, and (3) tabsolute sizef the
resulting matrixA’ which is directly proportional to the network
bandwidth.

In particular, the relative effectiveness is based on ttseilte
ing size of A’, the estimated optimal answkrand the number of
queries;. Itis defined agg—|A’|) + (¢— k) or the ratio of attained
improvement to that of an optimal algorithm.

We vary the ratio of the number of fragments to queries (wieth
the test matrix is short, square, or long) fran2 to 2. We repeat
each experiment ten times with different test matrices efsame
characteristics (size and total gain); the results preskeitclude
the average and plus/minus one standard deviation usioglears.

7.3 Results

We first present the result from the linear decompositioro-alg
rithms, which prove effective and fast for linear aggregatdext,
we show results for the duplicate insensitive heuristicenghwe
highlight the best and worst performing variahts.

Linear Aggregates.Our first set of experiments evaluate the linear
aggregate decompositions using the duplicate sensitiv&loan
generator. In Section 4 we noted that LU, QR, and SVD can be
used to compute tel’. They differ in their running times, and in
practice there is a concern that numerical instability ¢@anding
during repeated floating-point arithmetic) can cause tblertgiues

'Due to space constraints, we omit the results for the basiordposition
algorithm which, not surprisingly, turns out to be ineffgetin most practi-
cal situations.
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Figure 3: For 500x500 test matrices: (a) shows the resulting size af’ .
The solid line at y=500 represents the starting size and th@wer solid
line represents optimal. QR and SVD are always optimal and peisely
overlap each other and the lower solid line. (b) shows the ruming time
for each.

100

to incorrectly solve for the basis, and produce an inefficieh
Figure 3 shows the resulting size df, the overall effectiveness,
and the running time for the three algorithms using squartices
(500 queries with 500 fragments).

QR and SVD give always optimal results by finding the low-
est rank and therefore the smallest LU lagged in effectiveness
due to sensitivity to precision limitations, with low eftaeness
for matrices that had small potential gain and near optirffate
tiveness for matrices that had high potential. As expedtedand
QR are substantially faster than SVD in our measurementbbyta
an order of magnitude. Figure 4 shows that runtime increpshys
nomially (O(¢*)) as the size of the test matrix is increased.

In general, we found that the trends remain the same when the
shape of the test matrix is changed. QR and SVD remain optimal
and LU has an overall effectiveness ranging from 50-85%. As e
pected, the running times increase for matrices with aalkti rows
and decrease for matrices with fewer rows.

In summary, QR achieves the best tradeoff of effectivenads a
speed. While SVD has been designed to be more robust to fioatin
point precision limits, QR was able to perform just as welltbis
type of binary matrix. LU has no benefit, since it is just ad &s
QR, but not nearly as effective in finding the lowest rank.
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Duplicate Insensitive AggregatesOur second set of tests evaluate

the composition family of heuristics using the duplicateeinsitive 0

workload generator. In Figure 5 we show the results. Foitglar %0 7

we include a representative selection of the algorithmauding T 80 L b

the Basic ComposiTioNnand the D CoMPOSITIONuUSINg five g 70f | |

strategies (OR, MAP, MAD, MAW, and MRW). The strategies for é ol T . |

ADD ComposITIONwere chosen since they include: (1) the best = x0T - o P

strategy when used withA&s1c COMPOSITION (2) the worse per- € sop Foo e K 7 ﬁ.; 5 ]

forming, (3) the best performing and (4) two strategies kinto S 40 7 - T i E

the best performing. The strategies from Section 5 not shusva 2 ol o i

have similar shaped curves falling somewhere in the sp@obnut- 8 A A S

lined by those shown. Y e ]
The results show that Bo ComposiTIoNwith the MAP search e T T S S

strategy is both the most effective and fastest, althoughmmh ) I St N i e A A

more effective than with the OR strategy (which is substlyti 0 20 40 60 80 100

slower). This is somewhat surprising given how differere MAP Total Gain Achievable in Workload (%)

and OR strategies seem. Also note that in most cases thveelat (b)

effectiveness and the running time are inversely corrdlatEhis

indicates that some algorithms spend a lot of time searchinty 100000 T — A MAD

producing little benefit. 90000 | [ Add-OVI\?/ —xe
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LAPSE operation. However, before @@ LAPSE can be performed T ?xﬂi"dwgﬁ, o

often a number of BEND operations are needed before @G 70000 1 I N A i
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that search for more and more.BNDs after each other. S ool R T f;i i
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ations separately. As an operation is performed the resufow 20000 | B B

is considered for further operations in the same search |Bopn 10000 - "l |

though @LLAPSEs are performed beforelBENDS, once the strat-

egy begins performing BENDs it will continue to exclusively per- 0 0 100

form them until no more can be found. As a result, it gets stack Total Gain Achievable in Workload (%)

this phase of the search loop. Even worse, it performs so many (c)

BLEND operations that they block futuredCLAPSE operations
and find a poor local minimum. This strategy often finds a local
minimum and ends after it executes only two or three seammpslo
In contrast, the OR and MAP strategies are quick to search for

more QOLLAPSEoOperations after performing any operation. In the
case of MAP, all possible operations with the given set ofsdsv
computed, and they are then executed without further simych
While this tends to need many search loops, the strategynwill
get caught in a long stretch oftBNDs. In the case of OR, af-

Figure 5: For 100x100 test matrices (a) shows the resulting size af .
The solid line at y=100 represents the starting size and theer solid
line represents optimal. (b) shows the relative effectivezss. (c) shows
the running time for each.
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Figure 6: The running time as the size of a square matrix is increased.

ter every operation the search loop ends, and the seardrtsest
This strategy prevents getting stuck in theeBid phase, but also
wastes time continually searching the same portion of tlaecke
space over and over again after each operation. This cais&R
strategy to be considerably slower than the MAP strategy.

Figure 6 shows the running times of the fastest basic composi
tion and additive composition strategies, for various gigguare
matrices. Unfortunately, none of the algorithms scale aslthe
matrix size is increased. However, the additive compasisicales
considerably better than the basic composition algoritlffec-
tiveness, not shown, remains the same or slightly increaseke
size of the matrix increases.

Note that the super-linear scaling is not unexpected. Thb-pr
lem of finding a minimal boolean basis has been shown to be-equi
alent to finding the minimal number of maximal cliques in advip
tite graph [12]. Finding the maximal bi-clique is not only Nfard,
but also is known to be hard to approximate. Our solution,levhi
not fully exhaustive, considers a very large number of gnkses
and produces near-optimal answers in our experiments.

In summary, the Add Composition algorithm with the MAP séarc
strategy is the clearly the winner. It is 70-90% effectivdimting
the smallest basis set, and is often the fastest algorithdufdicate
insensitive aggregates.

Results from our PIER Implementation. Figure 7 depicts the
total network communication savings achieved by our dagpdién-
sensitive techniques executing over the PIER P2P queryeproc
sor [9] as a function of the total gain achievable in the queoyk-
load. In this specific experiment, PIER was configured to hse t
Bamboo DHT overl, 024 nodes, and run standard hierarchical
MAX queries; furthermore, each node had a randomly-geadrat
data distribution such that all nodes share the s&hraatrix and
explicit synchronization was not needed.

The numbers shown are for a workload1®0 concurrent MAX
aggregation queries. The “individual queries” line shohes base-
line communication overhead when the multi-query optiriara
feature is not utilized. The “non-optimized” line uses thelti
query optimization feature, butoes not perform any actual shar-
ing, and instead uses the identity fragment matrixfor— the line
just serves to illustrate the communication overhead otirguiery
optimization (essentially, the overhead of shipping thegkr frag-
ment identifiers). Finally, the last line employs our Add-RApti-
mization strategy, demonstrating a very substantialglimecrease
in communication cost as the achievable gain in the workioad
creases.
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Figure 7: Total network communication savings in PIER.

8. PRACTICAL MATTERS

Synchronizing F' Across the Network. In order to ensure the
PSRs inA’ that are communicated from one node to another are
correctly decoded we must guarantee that every node haaitie s
F matrix. Otherwise, during the global aggregation or retrts
tion phases, the PSRs itf may be incorrectly aggregated causing
the query results to be wrong. This is very important for eotr
ness of some decomposition algorithms such as the lineabwlg
routines LU, QR, and SVD. For the other decomposition athars
presented there is an optimization to the architecturediivainates
this requirement. We first describe a simple method for enguail
nodes have the sanféand then describe the optimization.

At the end of every aggregation window (after the node has col
lected all the raw data necessary to compute the aggregatdet
window) each nodei,, computes its local’ matrix, F;. Since each
node may have a different distribution of data, the maftiat node
¢ may differ from matrixF}; at nodej # . The globalF is the set
union of the rows in all locaF;’s.

This can be computed like any other aggregate using a trde. Al
the leaves of the tree send their compl&ieo their parents. Their
parents compute the union over all their children, and sbadé-
sult to their parent. At the root of this aggregation tree, ¢fobal
Fis computed. The globdl is then multicast to every node on the
reverse path of the aggregation tree.

For subsequent windows only additionsaeed to be transmit-
ted up or down the aggregation tree. Deletions can also hgapro
gated up the aggregation tree, however any node along theaat
stop the propagation (which prevents a change to the glbbaf
it has at least one other child (or itself) still needing trat. The
addition or deletion of a query will also change Query (column)
deletions require no communication (every node simply nesBo
the column forF’). The addition of a query (column) affects every
row in F, but in a limited fashion. Each row is either extended
with a 1, a 0, or both (which requires duplicating the old roiis
can be compactly transmitted as a modification bitmap with tw
bits per existing row. The global modification bitmap is th& O
of every node’s individual modification bitmap which cancalse
efficiently computed as an aggregate.

Once all nodes have the glob/| the general computation of the
query aggregates can begin. This synchronization methsdhea
negative effect of delaying all results for at least the tareof one
global aggregation plus one global multicast. In practice actual
delay must be sufficiently long to accommodate worst casaydel
in the network.



The exact communication cost of this method is dependent on then they can be separately optimized and executed usirtgcur

the query/data workload. However, given a constant sg¢tjkeries
and a set of: nodes, we can show the worst case cost of synchro-
nizing F' for each additional bitmap, and for how many windows
the system must remain unchanged to recoup the cost.

The worst case communication cost occurs if at least every le
node in the aggregation tree requires the addition of theegaew
row in a given aggregation window. In this situation everydeo
will need to transmit the new row iR up and down the aggregation
tree which yields a cost &f x n x ¢ bits per row. If only one node
requires the new row the cost is roughiy< ¢ + log(n) x ¢ as only
one node is sending data up the aggregation tree.

Assume the size of each PSRibits. The savings realized from
sharing will never be less than the eventual total gé&in, During
each window(1 — G) x q aggregates are being computed instead
of g queries in the no-sharing scenario, for a benefif(ef— (1 —

G+) X q) X p) xn = G¢ X ¢ X n X p bits per window. We reach the
break-even point afteg f;q’;fﬁxp f - windows. If multiple
rows must be added at same time, the number of windows till

the
the break-even point increases proportionally.

The basic decomposition and the algorithms for duplicagenn
sitive aggregates do not require a globahnd can avoid the asso-
ciated costs. Instead, it is sufficient to annotate evergyentA’
with its corresponding binary row i&”. Since every aggregation
tree is required to have an identifier (such as a query identifd
distinguish one tree from another, the basis row entry carskd as
the identifier. This is possible since the reconstructioagehdoes
not any require additional information about the decomipmsi

While this optimization does not apply to linear aggregaltese
are other techniques that could be considered. For some quer
workloads a static analysis of the query predicates may e su
cient to compute a superset Bf This can be further extended to
handle the actual data distribution by having nodes corhpec-
municate which portions of the data space they have. We leave
complete analysis of this optimization for future work.

Complex Queries. Our query workload to this point might seem
limited: sets of continuous queries that are identical pkéa their
selection predicates. In this section we observe that ahnigues
can be applied to richer mixes of continuous queries, as mm
ment to other multi-query optimization approaches.

For example, [11, 10] discuss optimizing sharing with geri
that have different window parameters. Their methods {pamtthe
stream into smaller windows that can later be combined tens
each of the queries. One can view the window-share optimiza-
tion as query rewriting, producing a set of queries with thee
window parameters, which are post-processed to propegyan
each specific query. In that scenario, our technique is egpb
the rewritten queries. Similarly, queries with differembgping at-
tributes can also be optimized for sharing. In that casesitialest
groups being calculated would be treated as separatei@astiof
the data that are then optimized separately by our techsicpiter
processing the results can be rolled-up according to eaehesu
specification.

Our approach does not depend on a uniform aggregation expres [16]

sion across queries. Queries that include multiple aggeefyac-
tions, or the same function over different attributes, cerigs that
require different aggregate functions can be optimizechasmour

approach — as long as the same decomposition can be usedl for al

the aggregate expressions. In these cases, the PSR cdritaifie

or A’ is the concatenation of each PSR needed to answer all aggre4{20]

gate functions. In those cases where different decompasitinust
be used (e.g., one function is a MAX and another is a COUNT)

nigues.

Our results showed that there is a clear choice of which opti-
mization technique to use for most classes of aggregateifunsc
However, if a function is both linear and duplicate-inséwsi it is
unclear which technique to apply. While few functions fallthis
category (see Section 2.2), for those functions the seledtialgo-
rithm will be dependent on the specific workload. Charazieg
the tradeoffs among workloads for these unusual functiensins
an open problem.

9. CONCLUSIONS

We have introduced the problem of optimizing sharing for dis
tributed aggregation queries with different selectiordicates. We
have demonstrated that such sharing can be revealed thtbagh
dynamic analysis of a binary fragment matrix capturing therec-
tions between data and query predicates and the algebenpr
ties of the underlying aggregate functions. For the cas@ear ag-
gregates, we show that the sharing potential can be opgimesdov-
ered using standard linear-algebra techniques. Unfatelyefor
duplicate-insensitive aggregates our sharing problemRshisrd;
thus, we propose a novel family of heuristic search algorittihat
is shown to perform well for moderately-sized matrices.

This work was funded by NSF Grant 11S-020918 and a gift froncidsoft.
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