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ABSTRACT
An emerging challenge in modern distributed querying is to effi-
ciently process multiple continuous aggregation queries simulta-
neously. Processing each query independently may be infeasible,
so multi-query optimizations are critical for sharing workacross
queries. The challenge is to identify overlapping computations that
may not be obvious in the queries themselves.

In this paper, we reveal new opportunities for sharing work in the
context of distributed aggregation queries that vary in their selec-
tion predicates. We identify settings in which a large set ofq such
queries can be answered by executingk ≪ q different queries.
Thek queries are revealed by analyzing a boolean matrix captur-
ing the connection between data and the queries that they satisfy,
in a manner akin to familiar techniques like Gaussian elimination.
Indeed, we identify a class oflinear aggregate functions (including
SUM, COUNT and AVERAGE), and show that the sharing poten-
tial for such queries can be optimally recovered using standard ma-
trix decompositions from computational linear algebra. For some
other typical aggregation functions (including MIN and MAX) we
find that optimal sharing maps to the NP-hardset basisproblem.
However, for those scenarios, we present a family of heuristic algo-
rithms and demonstrate that they perform well for moderate-sized
matrices. We also present a dynamic distributed system architec-
ture to exploit sharing opportunities, and experimentallyevaluate
the benefits of our techniques via a novel, flexible random work-
load generator we develop for this setting.

Categories and Subject Descriptors:H.2.4 [Systems]: Distributed
databases

General Terms: Algorithms, Design, Measurement

Keywords: Multi-query optimization, aggregation, linear algebra,
duplicate insensitive

1. INTRODUCTION
There is a large and growing body of work on the design of dis-

tributed query systems. The focus of much of this work has been
on the efficient execution of individual, one-shot queries,through
intelligent data-processing algorithms, data/query shipping strate-
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gies, etc. Recent years, however, have witnessed the emergence
of a new class oflarge-scale distributed monitoringapplications
– including network-traffic monitors, sensornets, and financial data
trackers – that pose novel data-management challenges. First, many
monitoring tasks demand support forcontinuous queriesinstead of
ad-hoc requests, to accurately track the current state of the envi-
ronment being monitored. Second, given the inherently distributed
nature of such systems, it is crucial to minimize thecommunication
overheadthat monitoring imposes on the underlying infrastructure,
e.g., to limit the burden on the production network [5] or to maxi-
mize sensor battery life [16].

In most monitoring scenarios, the naive “warehousing solution”
of simply collecting a large, distributed data set at a centralized
site for query processing and result dissemination is prohibitively
expensive in terms of both latency and communication cost – and
often, simply unnecessary. The amount of data involved can be so
large and dynamic in nature that it can easily overwhelm typical
users or applications with too much detailed information. Instead,
high-level,continuous aggregation queriesare routinely employed
to provide meaningful summary information on the underlying dis-
tributed data collection and, at the same time, to allow users to
iteratively drill-down to interesting regions of the data.Typical ag-
gregation queries also allow for effective,in-network processing
that can drastically reduce communication overheads by “pushing”
the aggregate function computation down to individual nodes in the
network [14].

Another crucial requirement for large-scale distributed monitor-
ing platforms is the ability toscalein both the volume of the un-
derlying data streams and the number of simultaneous long-running
queries. While there may be many queries in the network, theymay
have significant computational overlap either due to the intrinsic in-
terest of certain streams, or due to “canned” query forms that keep
queries narrowly focused. As an example, consider the Network
Operations Center (NOC) for the IP-backbone network of a large
ISP (such as Sprint or AT&T). Such NOCs routinely need to track
(in real time) hundreds of continuous queries collecting aggregate
statistics over thousands of network elements (routers, switches,
links, etc.) and extremely high-rate event streams at different lay-
ers of the network infrastructure. This requirement emphasizes a
new class of multi-query optimization problems that focus on dy-
namically sharing execution costs across continuous stream queries
to optimize overall system performance.

Our Contributions. In this paper, we focus on dynamic multi-
query optimization techniques for continuous aggregationqueries
over physically distributed data streams. In a nutshell, wedemon-
strate opportunities to computeq aggregation queries that vary in
their selection predicates viak ≪ q queries that may, in fact, be
different from the input queries themselves. This surprising result



arises from a formalism that attacks the shared optimization prob-
lem through the analysis of a dynamicfragment matrixthat cap-
tures the connection between observed data and query predicates,
and the algebraic properties of the underlying aggregate function.
This leads us to algorithmic solutions for these problems grounded
in linear algebra and novel combinatorial optimization techniques.
More concretely, our main contributions can be summarized as fol-
lows.

• Algebraic Query/Data Decomposition.We identify sharing op-
portunities across different aggregation functions through the anal-
ysis of a dynamic,boolean fragment matrixthat accurately captures
the disjoint fragments of the streaming data tuples with respect to
the underlying selection predicates. The basic intuition here is that
the set of computed aggregates can be effectively compressed by
decomposingthe fragment matrix into“independent components”,
which are sufficient to reconstruct every individual aggregate an-
swer. The exact notion of an “independent component” variesde-
pending on the algebraic characteristics of the underlyingaggre-
gate (e.g., linear or duplicate-insensitive), resulting in optimization
problems of varying computational complexity.

•Novel Optimization Algorithms for Distributed Aggregate Shar-
ing. Based on our insights from the fragment-matrix model, we
formulate our sharing optimization problems for distributed ag-
gregates from different classes of aggregation functions.For the
class of linear aggregates (e.g.,COUNT, SUM) we show efficient,
optimal sharing strategies based on existinglinear-algebra tech-
niques(such as LU, QR, or SVD decompositions). Unfortunately,
duplicate-insensitive aggregates (e.g.,MIN, MAX) result in a dra-
matic increase in problem complexity, since the problem maps to
the NP-hardSet-Basis Problem[7] (known to be inapproximable
to within any constant factor [13]); thus, we propose a noveleffi-
cient heuristic technique that, as our empirical results demonstrate,
performs well in practice. We also give an analysis of the sharing
benefits.

• Implementation Details: Dynamics and Complex Queries.
We address the challenges of ensuring efficient global optimiza-
tion across many nodes in a distributed environment, even asdata
may be changing locally. This involves a simple lightweightsyn-
chronization protocol that passes messages along the reverse path
of the distributed aggregation. We also show how our resultscan be
applied to richer query mixes as a complement to other multi-query
optimization approaches.

•Extensive Experimental Results Validating our Approach.We
develop a flexible workload generator for our problem that allows
us to explicitly and flexibly control the degree of benefit available in
the workload. Via extensive simulation results, we clearlydemon-
strate that our algorithms can provide dramatic communication sav-
ings. For linear aggregate functions, two of our theoretically-optimal
methods achieve 100% of the potential benefit under all settings,
despite the potential for numerical instability in floatingpoint com-
putations; instabilities in the third technique reduce itseffective-
ness in some cases. For duplicate insensitive aggregates, the best
of our methods approaches 90% of optimal across a wide range of
workloads. In addition to the analytical simulation numbers, we
also demonstrate the communication savings of our methodology
in a full implementation in the PIER distributed query engine [9],
running on an experimental cluster.

Prior Work. [17] and similar work focus on select/project/join
queries. Contrastingly, our work only addresses aggregation.

For the case of asingledistributed aggregation query, efficient
in-network execution strategies have been proposed by several re-

cent papers and research prototypes (including, for instance, TAG [14],
SDIMS [20], and PIER [9]). The key idea in these techniques is
to perform the aggregate computation over a dynamic tree in an
overlay network. Aggregation occurs over a dynamic tree, with
each node combining the data found locally along with anyPartial
State Records (PSRs)it receives from its children, and forward-
ing the resulting PSR one hop up the tree. Over time, the tree
dynamically adjusts to changing node membership and network
conditions. More recent work on distributed data streaminghas
demonstrated that, with appropriate PSR definitions and combina-
tion techniques, in-network aggregation ideas can be extended to
fairly complex aggregates, such as approximate quantiles [4, 8],
and approximate histograms and join aggregates [3]. None ofthese
earlier papers considers the case of multiple distributed aggregation
queries, essentially assuming that such queries are processed indi-
vidually, modulo perhaps some simple routing optimizations. For
example, PIER suggests using distinct routing trees for each query
in the system, in order to balance the network load [9].

In the presence of hundreds or thousands of continuous aggre-
gation queries, system performance and scalability dependupon
effective sharing of execution costs across queries. Recent work
has suggested solutions for thecentralizedversion of the problem,
where the goal is to minimize the amount of computation involved
when tracking (1) severalGROUP-BY aggregates (differing in their
grouping attributes) [21], or (2) several windowed aggregates (dif-
fering in their window sizes and/or selection predicates) [10, 11],
over a continuous data streamobserved at a single site. In the dis-
tributed setting, network communication is the typical bottleneck,
and hence minimizing the network traffic becomes an important
optimization concern.

In an independent effort, [19] has proposed a distributed solu-
tion for the sub-problem we term “linear aggregates” in thispaper.
Their scheme is based on heuristics tailored to power-constrained
sensornets where the query workload is restricted to astatic col-
lection of simple spatial predicates related to the networktopology.
Instead, our dynamic fragment-based method does not have any
restrictions on the query predicates, and employs optimal linear-
algebra techniques to uncover sharing across linear aggregates. They
also observe the analogy to the Set-Basis problem forMIN/MAX ag-
gregates but do not propose any algorithmic solution for theduplicate-
insensitive case.

2. OVERVIEW
The goal of the algorithms we present in this paper is to minimize

overall network communication. During an aggregation query, each
node must send a partial state record (PSR) to its parent in anag-
gregation tree. If there is no sharing, then we are communicating
one partial state record (PSR) per node per query per window.If we
haveq queries, our goal is to only sendk PSRs per node per win-
dow, wherek ≪ q, such that thek PSRs are sufficient to compute
the answer to allq queries. The next section discusses the intuition
for how to select thesek PSRs.

2.1 The Intuition
Consider a very simple example distributed monitoring system

with n nodes. Each of the nodes examines its local stream of
packets. Each packet is annotated with three boolean values: (1)
whether there is a reverse DNS entry for the source, (2) if thesource
is on a spam blacklist, and (3) if the packet is marked suspicious by
an intrusion detection system (IDS). One could imagine various ap-
plications monitoring alln streams at once by issuing a continuous
query to count the number of global “bad” packets, where eachper-
son determines “bad” as some predicate over the three flags. Here



are example query predicates from five COUNT queries over the
stream of packets from all the nodes:

1. WHERE noDNS = TRUE
2. WHERE suspi
ious = TRUE
3. WHERE noDNS = TRUE OR suspi
ious = TRUE
4. WHERE onSpamBla
kList = TRUE
5. WHERE onSpamBla
kList = TRUEAND suspi
ious = TRUE
We use an idea from Krishnamurthy et al. [10] to get an insight

for how to execute these queries using fewer than 5 PSRs. In their
work, they look at the set of queries that each tuple in the stream
satisfies, and use this classification to partition the tuple-space to
minimize the number of aggregation operations (thereby reducing
computation time). Returning to our five example queries above,
suppose in a single window at nodei we have tuples that can be
partitioned into exactly one of the following five categories:

1. Tuples that satisfy queries 1 and 3 only
2. Tuples that satisfy queries 2 and 3 only
3. Tuples that satisfy query 4 only
4. Tuples that satisfy queries 1, 3, and 4 only
5. Tuples that satisfy queries 2, 3, 4 and 5 only

We will refer to each of these categories as afragment. As a com-
pact notation, we can represent this as a (f × q) booleanfragment
matrix, F , with each column representing a query (numbered from
left to right) and each row representing a fragment:

Query 1↓ ... ↓ Query 5

F =

2

6

6

6

4

1 0 1 0 0
0 1 1 0 0
0 0 0 1 0
1 0 1 1 0
0 1 1 1 1

3

7

7

7

5

← Fragment 1

...

← Fragment 5

Now, suppose in a given window some nodei receives a number
of tuples corresponding to each fragment; e.g., it receives23 tuples
satisfying queries 1 and 3 only (row 1), 43 satisfying queries 2 and
3 only (row 2), etc. We can also represent this as a matrix called
Ai:

AT

i =
ˆ

23 43 18 109 13
˜

Given the two matrices, we can now compute the local count
for the first query (the first column ofF ) by summing the first and
fourth entries inAi, the second query by summing the second and
fifth entries inAi. In algebraic formAT

i ×F will produce a one-row
matrix with each column representing the count for the respective
query. Encoding the information as matrixAi is not more compact
than sending the traditional set of five PSRs (one for each query).
However, if we can find a reduced matrixA′

i – one with empty
entries that do not need to be communicated – such thatA′T

i ×
F = AT

i × F , we can save communication at the expense of more
computation.

This is indeed possible in our example. First, note that fragment
4 is the OR of thenon-overlappingfragments 1 and 3 (i.e., their
conjunction equals zero). Now, observe the significance of that fact
with respect to computing our COUNT queries: when summing up
the counts for those queries that correspond to fragment 1 (queries
1 and 3), we can ignore the count of fragment 3 since its entries
for those queries are zero. Similarly, when summing up the counts
for queries overlapping fragment 3 (query 4), we can ignore the
count of fragment 1. Because of this property, we can add the count
associated with fragment 4 intobothof the counts for fragments 1
and 3 without double-counting in the final answer, as follows:

A′T

i =
ˆ

23+109=132 43 18+109=127 109→∅ 13
˜

Using this newA′

i, A′T

i × F will still produce the correct answer
for each query, even thoughA′ has more empty entries. And, since
A′

i has a zero entry, there is a corresponding savings in network
bandwidth, sending only four PSRs instead of five. In essence, we
only need to execute four queries instead of the original five. The
key observation is that the size ofA′

i is equal to the number of
independent rowsin F , or the rank of F ; the exact definition of
independence depends on the aggregation function as we discuss
next. In all cases, the rank ofF will always be less than or equal to
min(f, q). Therefore we will never need more thanq PSRs, which
is no worse than the no-sharing scenario.

2.2 Taxonomy Of Aggregates
The particular optimization presented in the previous section (based

on ORing non-overlapping fragments) works for all distributive and
algebraic aggregate functions. However, some aggregate functions
have special properties that allow more powerful solutionsto be
used that exploit additional sharing opportunities. We categorize
aggregates into three broad categories:linear, duplicate insensi-
tive, andgeneral. These three categories map to different variations
of the problem and require separate solutions. We first discuss the
taxonomy and then briefly introduce our solutions.

Formally, we use the termlinear for aggregate functions whose
fragment matrix entries form afield (in the algebraic sense) un-
der two operations, one used for combining rows, the other for
scaling rows by constants. An important necessary propertyof a
field is that there beinversesfor all values under both operators.
Among the familiar SQL aggregates, note that there is no natural
inverse for MIN and MAX under the natural combination opera-
tor: given thatz = MAX (x, y), there is no uniquey−1 such that
MAX (z, y−1) = x. Hence these are not linear. Another category
we consider areduplicate insensitiveaggregates, which produce the
same result regardless of the number of occurrences of a specific
datum. The table below lists a few example aggregate functions for
each category:

Non-linear Linear
Duplicate
Sensitive

k-MAX, k-MIN SUM, COUNT, AVER-
AGE

Duplicate
Insensitive

MIN, MAX, BLOOM
FILTER, logical AND/OR

Spectral Bloom filters [2],
Set expressions with up-
dates [6]

The intuition for why k-MAX and k-MIN (the multi-set of the
top k highest/lowest datums) are non-linear is analogous to that
of MAX and MIN. k-MAX/MIN are also duplicate sensitive since
evaluating each additional copy of the same highest datum would
expel thekth highest datum due to the multi-set semantics.

Spectral Bloom filters are an extension of Bloom filters that keep
a frequency associated with each bit. The frequency is incremented
when a datum maps to that bit, and can be decremented when a da-
tum is removed from the filter. This is linear because the frequen-
cies can be added/subtracted to each other and can be scaled by a
real number. In addition, the output of the filter is based on whether
the frequency is greater than zero or not, so counting the same da-
tum twice may produce an inflated frequency value but does not
change the output.

In Section 4, we address linear aggregates where this problem
can be reduced directly to rank-revealing linear algebra factoriza-
tion of matrixF , and polynomial-time techniques from the litera-
ture directly lead us to an efficient solution. For duplicateinsen-
sitive aggregates, we explain in Section 5 that the problem is a
known NP-hard problem and has higher computational complex-
ity; in these cases, we develop a family of heuristics that weeval-



uate experimentally. Finally, for aggregates that are neither linear
or duplicate insensitive, the most conservative optimization algo-
rithm must be used. We stress that for both linear and duplicate
insensitive aggregates, our solutions will never require more global
aggregate computations than the no-sharing scenario.

We now discuss our system architecture and our general solution
to this problem.

2.3 Architecture
The general technique for performing our multi-query optimiza-

tion has four phases. First, at each node,i, we need to create the
initial F andAi matrices in thefragmentationphase. Second, we
can decomposeF andAi into a smallerA′

i. Third, we perform
the global aggregationof all local A′

i’s across all nodes. Finally,
we canreconstructthe final answers to each query at some nodej.
This process is illustrated in Figure 1 and described in detail below.

In the first phase, fragmentation, we are using the same tech-
nique presented in [10]. Each tuple is locally evaluated against each
query’s predicates to determine on-the-fly which fragment the tuple
belongs to. We can use techniques such as group filters [15] toef-
ficiently evaluate the predicates. Once the fragment is determined,
the tuple is added to the fragment’s corresponding local PSRin Ai.

In the second phase, decomposition, each node will locally apply
the decomposition algorithm toF andAi to produce a smaller ma-
trix, A′

i. The specific decomposition algorithm used is dependent
on the type of aggregate function being computed. In Section3, we
present the basic algorithm that applies to all functions. Section 4
shows an algorithm that can be used for linear aggregate functions,
and, in Section 5, we show a family of heuristic algorithms that
work for duplicate insensitive functions.

We require that every node in the system use the sameF matrix
for decomposition. TheF matrices must be the same so that every
entry in A′

i has the same meaning, or in other words, contains a
piece of the answer to same set of queries. Nodes that do not have
any tuples for a particular fragment will have an empty PSR inAi.
In Section 8, we explain how to synchronizeF on all nodes as data
is changing locally; for duplicate insensitive aggregate functions,
we are able toeliminate this requirement altogether.

In the third phase, global aggregation, we aggregate each ofthe
A′

i’s over all nodes in the system to produce the globalA′. Since
we want to maintain the load balanced property of the non-sharing
case, we aggregate each entry/fragment inA′ separately in its own
aggregation tree. Once the final value has been computed for an
entry ofA′ at the root of its respective aggregation tree, the PSR is
sent to a single coordinator node for reconstruction.

The fourth phase, reconstruction, begins once the coordinator
node has received each of the globally computedA′ entries. Us-
ing theF matrix (or its decomposition) the answer to all queries
can be computed. The reconstruction algorithm is related tothe
specific deconstruction algorithm used, and is also described in the
respective sections.

We take a moment to highlight the basic costs and benefits of
this method. Both the sharing and no-sharing methods must dis-
seminate every query to all nodes. This cost is the same for both
methods and is amortized over the life of the continuous query. Our
method introduces the cost of having all nodes agree on the same
binaryF matrix, the cost to collect all of theA′ entries on a single
node, and, finally, the cost to disseminate the answer to eachnode
that issued the query. The benefit is derived from executing fewer
global aggregations (in the third phase). The degree of benefit is de-
pendent on the data/query workload. In Section 8, we analytically
show for which range of scenarios our method is beneficial.

3. GENERAL DECOMPOSITION SOLUTION
Our first algorithm, basic decomposition, applies to all aggrega-

tion functions, and directly follows the intuition behind the opti-
mization we presented in the previous section. Our aim is to find
the smallest set of basis rows, such that each row is exactly the dis-
junction of two or more basis rows that are non-overlapping,i.e.
their conjunction is empty. If the basis rows were to overlap, then
a tuple would be aggregated multiple times for the same query.

Formally, we want to find the basis rows inF under a limited
algebra. Standard boolean logic does not allow us to expressthe
requirement that basis rows be non-overlapping. Instead, we can
define an algebra using a 3-valued logic (with values of 0, 1, and I
for “invalid”) and a single binary operator called ONCE. Theoutput
of ONCE is 1 iff exactly one input is 1. If both inputs are 0, the
output of ONCE is 0, and if both inputs are 1 the output isI . Using
this algebra, the minimal set of rows which can be ONCEd to form
every row inF is the minimal basis set, and our target solution.
TheI value is used to prevent any tuple from being counted more
than once for the same query.

The exhaustive search solution is prohibitively expensive, since
if each row isq bits there are22

q

possible solutions. While this
search space can be aggressively pruned, it is still too large. Even
a greedy heuristic is very expensive computationally, since there
is a total of2q choices (the number of possible rows) at each step
– simply enumerating this list to find the locally optimal choice is
clearly impractical.

To approach this problem, we introduce a simple heuristic that
attempts to find basis rows using the existing rows inF . Given
two rows,i andj, if j is a subset ofi thenj is covering those bits
in i that they have in common. We can therefore decomposei to
remove those bits that are in common. When we do that, we need
to alterA by adding the PSR fromi’s entry toj’s entry.

We can define a DECOMPOSEoperation as:

DECOMPOSE(F,Ai, i, j):
if (i 6= j) AND (¬F [i]&F [j] = 0) then\\ONCE(F[i],F[J])

F [i] = F [i]XORF [j]
Ai[j] = A[j] + A[i]

else return invalid

A simple algorithm can iteratively apply DECOMPOSEuntil no
more valid operations can be found. This decomposition algorithm,
will transformF andAi into F ′ andA′

i:

BASIC DECOMPOSITION(F,Ai):
boolean progress = true
while progress = true

progress = false
for all rowsi ∈ F

for all rowsj ∈ F
if Decompose(F, Ai, i, j) 6= invalid

then progress = true
for all rowsk ∈ Ai

if |F [k]| = 0 then
Ai[k] = ∅ \\ rows inF with all 0’s

Reconstruction is straightforward sinceA′T

i × F ′ = AT

i × F .
The running time of the basic decomposition algorithm isO(f3),

wheref is the number of rows inF . Since the basic decomposition
is searching a small portion of the search space, it is not expected to
produce the smallest basis set. Furthermore, it is the only algorithm
we present that can produce an answer worse than no-sharing.The
algorithm starts withf basis rows, wheref can be greater thanq,
and attempts to reduce the size of this initial basis. This reduction



Figure 1: Tuples are first aggregated by fragment (1) into a localAi PSR.F and Ai are then decomposed (2) to formA′

i. Each entry in A′

i is then
aggregated over all nodes (3) in separate aggregate trees. The final global value for each entry inA′ sent to some nodej. Nodej can then reconstruct
(4) the answers to every query and distribute the result.

may not always be sufficient to find a basis that is smaller thanor
equal toq (although one such basis must exist). In these cases we
revert to aq× q identity matrix which is equivalent to a no-sharing
solution. However, this simple algorithm does provide a foundation
for our other solutions.

4. LINEAR AGGREGATE FUNCTIONS
If the aggregate function is linear, such as COUNT, SUM, or AV-

ERAGE, we are no longer constrained to using the limited algebra
from the previous section. Instead, we can treat the matrix entries
as real numbers and use linear algebra techniques akin to Gaussian
Elimination, adding and subtracting rows inF from each other, and
multiplying these rows by scalars. Our goal of reducing the size of
Ai can therefore be accomplished by finding the minimal set of
linearly independent rowsF ′ in F , or the rank ofF . By defini-
tion F can be reconstructed fromF ′, so we can createA′

i from Ai

at the same time and still correctly answer every query during the
reconstruction phase.

For example, suppose we are calculating the COUNT for these
five queries with thisF andAi matrix:

F =

2

6

6

6

4

1 1 0 1 1
1 0 1 1 0
0 1 1 1 0
1 1 0 0 0
1 1 1 1 0

3

7

7

7

5

Ai =

2

6

6

6

4

13
54
24
78
32

3

7

7

7

5

The answer to the first query (in the leftmost column) is13 + 54 +
78 + 32 or 177. The complete solution matrix can be computed
usingAT

i × F .
It turns out that we can expressF andAi using only four rows:

F ′ =

2

6

6

4

1 1 1 1 0
0 1 1 1 0
0 0 −1 −1 0
0 0 0 1 1

3

7

7

5

A′

i =

2

6

6

4

177
−30
37
13

3

7

7

5

UsingF ′ andA′

i we can still produce the correct solution matrix,
usingA′T

i × F ′. In this example we used Gaussian Elimination on
F to find the smallest set of basis rows. We will now discuss how
to solve this problem using more efficient algorithms.

In numerical computing,rank-revealing factorizationsare used
to the find the minimal set of basis rows. We will apply three
well-studied factorizations to our problem: the LU, QR, andSVD

decompositions. These algorithms will decomposeF into two or
more matrices that can be used in local decomposition to transform
Ai into A′

i and then to reconstructA′ into the query answers at the
coordinator node. These factorization methods and their implemen-
tations are well studied in the numerical computing literature [1].
We now present formulations for utilizing these factoring methods.

An LU algorithm factorsF into a lower triangular matrixL and
an upper triangular matrixU such thatL × U = F . In the de-
composition phase we can formA′

i usingAT

i × L and remove any
entries inA′

i whose corresponding row inU is composed of all
zeros. Reconstruction at the coordinator is simplyA′ × U . We
can safely remove the entries inA′

i whose corresponding row inL
is all zeros because in reconstruction those entries will always be
multiplied be zero and thus do not contribute to any results.During
reconstruction we insert null entries inA′ as placeholders to insure
the size ofA′ is correct for the matrix multiplication.

Using QR factoring is very similar to using LU. In this case,
the QR algorithm factorsF into a general matrixQ and an upper
triangular matrixR such thatQ × R = F . We form A′

i using
AT

i ×Q and remove any entries inA′

i whose corresponding row in
R is composed of all zeros. Reconstruction is accomplished using
A′ ×R.

SVD factorsF into three matrices,U , S, andV T. A′

i is formed
in decomposition usingAT

i × U × S. Using this method, we re-
move entries fromA′

i whose corresponding row inS is zero. Re-
construction is accomplished by computing the product ofA′ and
V T. With all three algorithms, the factorization ofF is determin-
istic and therefore the same on all nodes, allowing us to aggregate
A′

is from all nodes before performing reconstruction.
These algorithms all have a running time ofO(m×n2) wherem

is the size of the smaller dimension ofF andn is the larger dimen-
sion. In addition, all three methods would be optimal (finding the
smallest basis set and thus reducingF andAi to the smallest pos-
sible sizes) using infinite precision floating point arithmetic. How-
ever, in practice these are computed on finite-precision computers
which commonly use 64 bits to represent a floating point number.
Factorization requires performing many floating point multiplica-
tions and divisions which may create rounding errors that are fur-
ther exacerbated through additional operations. While LU factor-
ization is especially prone to the finite precision problem,QR fac-
toring is less so, and SVD is the least likely to produce sub-optimal
reductions inA′’s size. Due to this practical limitation, the fac-



torization may not reach the optimal size. In no case will anyof
these algorithms produce an answer that requires more global ag-
gregations than the no-sharing scenario. In addition, these rounding
error may introduce errors inA′ and therefore perturb the query re-
sults. However, these algorithms, in particular SVD, are considered
robust and used in many applications.

5. DUP-INSENSITIVE AGGREGATES
The previous algorithms preserve the invariant that each tuple

that satisfies a particular query will be aggregated exactlyonce for
that query. However, some aggregate functions, such as MIN and
MAX, will still produce the same answer even if a tuple is aggre-
gated more than once. We can take advantage of this property when
decomposingF and achieve a higher communication savings com-
pared to the previous algorithms. Consider this simple example:

F =

2

6

6

6

4

1 1 0 1 1
1 0 1 1 0
0 1 1 1 0
1 1 0 0 0
1 1 1 1 0

3

7

7

7

5

F ′ =

2

6

6

4

1 1 0 1 1
1 0 1 1 0
0 1 1 1 0
1 1 0 0 0

3

7

7

5

We notice that the fifth row ofF is equal to the OR of the sec-
ond and third (or second and fourth, or third and fourth). Thus we
can define a matrixF ′ that removes this redundant row. The cor-
responding operation to theA matrix is to aggregate the fifth entry
with the second entry, aggregate the fifth entry with the third entry,
and then remove the fifth entry. Intuitively, this is moving the data
from the fifth fragment to both the second and third fragments.

Similar to the previous sections, the goal is to find the minimum
number ofindependent rows. But in this case, the independent rows
are selected such that all rows inF can be obtained by combining
rows in the basis using only the standard OR operation, rather than
ONCE.

This problem is also known as theset basisor boolean basis
problem. The problem can be described succinctly as follows.
Given a collection of setsS = {S1, S2, ...Ss}, a basisB is de-
fined as a collection of sets such that for eachSi ∈ S there exists
a subset ofB whose union equalsSi; the set basis problem is to
find the smallest such basis set. Our problem is the same, where
S = rows of F and B = rows of F ′. The set of possible basis
sets is22

n

wheren is the number of elements in
S

S. This prob-
lem was proved NP-Hard by Stockmeyer [18], and was later shown
to be inapproximable to within any constant factor [13]. To our
knowledge, ours is the first heuristic approximation algorithm for
the general problem. In [12] Lubiw shows that the problem can
be solved for some limited classes ofF matrices, but these do not
apply in our domain.

As with the general decomposition problem in Section 3, the
search space of our set basis problem is severely exponential in
q. To avoid exhaustive enumeration, our approach for finding the
minimal basis set,F ′, is to start with the simplest basis set, aq× q
identity matrix (which is equivalent to executing each query inde-
pendently), and apply transformations. The most intuitivetransfor-
mation is to OR two existing rows inF ′, i andj, to create a third
row k. Using this transformation (and the ability to remove rows
from F ′) one could exhaustively search for the minimal basis set.
This approach is obviously not feasible.

We apply two constraints to the exhaustive method in order to
make our approach feasible. First, after applying the OR transfor-
mation, at least one of the existing rows,i or j, is always imme-
diately removed. This ensures that the size of the basis set never
increases. Second, we maintain the invariant that after each trans-
formation the set is still a valid basis ofF .

We can now formally define two operations, BLEND and COL-
LAPSEwhich satisfy these invariants. Given a matrixF and a basis
F ′ for F , both operations overwrite a rowF ′[i] with the OR of row
F ′[i] and another rowF ′[j]. COLLAPSE then removes rowj from
F ′, whereas BLEND leaves rowj intact. After performing one of
these operations, if the newF ′ still forms a basis forF then the
operation is valid; otherwise the originalF ′ is kept.

COLLAPSE is the operation that achieves a benefit, by reducing
the size of the basis set by one. COLLAPSE is exploiting the co-
occurrence of a bit pattern inF . However, it may not be valid
to apply COLLAPSE until one or more BLEND operations are per-
formed. The intuition for this is that when the bit pattern insome
input row can be used in multiple basis rows, BLEND preserves the
original row so that it can be used as, or part of, another basis row.
Consider matrixF , and the followinginvalid COLLAPSE transfor-
mation:

F =

2

6

6

4

0 1 1 1
1 0 0 1
1 1 1 1
0 1 0 1

3

7

7

5

F ′ =

2

6

6

4

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

3

7

7

5

→

2

4

1 0 0 1
0 1 0 0
0 0 1 0

3

5

We cannot directly COLLAPSE rows one and four inF ′ as shown
above. The resultingF ′ is no longer able to reconstruct the first
or fourth rows inF via any combination of ORs; we call such a
transformation “invalid”. However, if we first BLEND rows two
and four (leaving row four), we can then COLLAPSE rows one and
four, as shown next:

F ′ =

2

6

6

4

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

3

7

7

5

→

2

6

6

4

1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1

3

7

7

5

→

2

4

1 0 0 1
0 1 0 1
0 0 1 0

3

5

Using these two operations we can search a subset of the over-
all search space for the minimal basis set. A simple search algo-
rithm, called BASIC COMPOSITION, performs BLEND or COL-
LAPSE in random order until no more operations can be executed.
The pseudo-code is shown below:

BASIC COMPOSITION(F )
F ′ = qxq identity matrix
boolean progress = true
while progress = true

progress = false
for all rowsi ∈ F ′

for all rowsj ∈ F ′

if i 6= j then
if COLLAPSE(F, F ′, i, j) 6=invalid then

progress = true
break to while loop

if BLEND (F, F ′, i, j) 6=invalid then
progress = true
break to while loop

A′

i can be calculated by aggregating together each element inAi

that corresponds to a row inF which is equal to or a superset of the
A′

i entry’s correspondingF ′ row.
There are three key limitations of this algorithm:

• Once an operation is performed it can not be undone: both
operations are non-invertible and there is no back-tracking.
This limits the overall effectiveness of finding the minimal
basis set since the algorithm can get trapped in local minima.



• The random order in which operations are performed can de-
termine the quality of the local minimum found.

• At any given point there areO(f2) possible row combina-
tions to choose from. Finding a valid COLLAPSEor BLEND

is time consuming.

In effect, the algorithm takes a single random walk through the
limited search space. For some workloads, the optimal solution
may not even be attainable with this method. However, while this
heuristic algorithm gives no guarantees on how small the basis set
will be, it will never be worse than the no-sharing solution.We will
show in Section 7 that this heuristic is often able to find 50% of
the achievable reductions in the size of the basis set, but its running
time is extremely long.

Refinements. Our first refinement takes a slightly different ap-
proach. Instead of optimizing every query at once, we incremen-
tally add one query at time optimizing as we go. The two key ob-
servations are (1) that a valid covering forq − 1 queries can cover
q queries with the addition of a single row which only satisfiesthe
new query and (2) the optimal solution forq queries given an opti-
mal basis solution forq− 1 queries and the single basis row for the
qth query will only have up to one valid COLLAPSEoperation.

Using these observations we can define the ADD COMPOSITION

algorithm which incrementally optimizes queries one at a time:

ADD COMPOSITION(F , F ′, start)
Require: F ′ hasstart columns

let q = the number of queries\\ columns inF
let f = the number of rows\\ rows inF ′

for c = start + 1 up to q
ExpandF ′ to (f + 1)× c with 0’s
F ′[f + 1][c] = 1
Fc = Project(F ,c) \\ See Following Algorithm
Optimize(Fc,F ′,f + 1)

return F ′

PROJECT(S, columns)
for all rowsi ∈ S

for all colsj ∈ S
if j≤columns then

S′′[i][j]=S[i][j]
elseS′′[i][j]=0

S′ = unique rows inS′′

return S′

The OPTIMIZE step in ADD COMPOSITION is very similar to
the repeat loop in BASIC COMPOSITION. It has asearch loopthat
continues looking for combinations of rows that can be used in a
COLLAPSE or BLEND operation until there are no such combina-
tions. OPTIMIZE has two key improvements over the BASIC COM-
POSITION. First, COLLAPSEs and BLENDs are not considered if
they combine two old (optimized) rows. Second, since only one
row was added toF ′, once a COLLAPSE is performed the opti-
mization is over and the search loop is stopped, since no additional
COLLAPSEs will be found. As shown in Section 7 this method
is considerably faster and still equally effective at finding a small
basis set compared to the Basic Composition algorithm.

We consider three dimensions for search loop strategies:
• Number of operations per iteration:

– O: Perform only one operation per search loop and then
restart the loop from beginning.

– M: Perform multiple operations per search loop only
restarting after every combination of rows are tried.

• Operation preference:

– A: Attempt COLLAPSE first, but if not valid attempt
BLEND before continuing the search.

– R: Perform all COLLAPSEs while searching, but delay
any BLENDs found till the end of the search loop.

– S:First search and perform only COLLAPSEoperations,
then search for and perform any BLENDs. This requires
two passes over all row pairs per loop.

• Operation timing:

– W: Execute operations immediately and consider the
new row formed in the same loop.

– D: Execute operations immediately but delay consider-
ing the new row for additional operations till the next
loop.

– P: Enqueue operations till the end of the search loop
and then execute all operations.

The BASIC COMPOSITIONalgorithm shown uses the O/R strat-
egy. The algorithm performs one operation per iteration of the outer
loop. So after each operation, it will begin the search againfrom
the beginning. The algorithm favors COLLAPSEby attempting that
operation first. The operator timing dimension is not relevant for
strategies that only perform one operation per iteration. Note that
the BASIC COMPOSITIONcan be modified to use any of the pos-
sible search strategies. In the evaluation section we only show the
strategy that performed the best in our experiments, M/A/W.

There are only twelve search strategies possible using the three
dimensions evaluated (when performing only one operation per
search loop, operation timing is not relevant). All twelve are ex-
perimentally evaluated in Section 7.

6. POTENTIAL GAINS
Before we evaluate the effectiveness of our techniques experi-

mentally, we explore the analytical question of identifying query/data
workloads that should lead to significant beneficial sharing, and
quantifying that potential benefit. This will provide us a framework
for evaluating how close our “optimization” techniques come to a
true optimum. In this section, we show that there are cases where
sharing leads to arbitrarily high gain, given a sufficient number of
queries. We present two constructions, one designed for duplicate
insensitive query workloads, the other for duplicate sensitive work-
loads. Our goal is to construct a workload that maximizes theshar-
ing or benefit potential. We define the total gain,Gt as:

Gt = 1− (# aggregates executed÷ # queries answered)

We also define the fragment gain which is the gain over computing
each fragment,s as:

Gf = 1− (# aggregates executed÷ # fragments)

The total gain,Gt, is the most important metric, since an effective
decomposition algorithm can translate this sharing potential into a
proportional amount of network bandwidth savings. The fragment
gain,Gf is the benefit over computing every fragment inF .

6.1 Duplicate Insensitive
To maximize the sharing potential we start withb base queries

(b1, b2, b3, ...bb) and data that satisfies every conjunctive combina-
tion of theb queries({b1}, {b2}, {b3}, . . . {b1, b2}, {b1, b3}, . . .
{b1, b2, b3, . . . , bb}) such that we have2b − 1 fragments (the−1
is for data that satisfies no queries). At this stage, no sharing is
beneficial since onlyb aggregates are actually needed (one for each
query).



Figure 2: Example Venn diagrams for duplicate insensitive construc-
tion (a) and the duplicate sensitive construction (b). In (a) the addi-
tional query b1 ∪ b2 is outlined. In (b) the additional query b1 ∪ c1 ∪ c2

is outlined.

Using the initialb queries, we can write an additional2b− 1− b
queries by combining them viadisjunction, i.e. queryx matches
data that satisfies queryb1 andb2, queryy matches data satisfying
b2 or b3, etc. One such additional query is outlined in Figure 2(a).
In this case there are2b such combinations from which we subtract
the originalb queries and the combination that is the disjunction of
the empty set of queries. The additional queries do not introduce
any additional fragments.

These new2b − 1 − b queries can be answered if we have the
answers to the originalb queries. Since the aggregate functions we
consider here are duplicate insensitive, the disjunction of multiple
queries is simply their aggregation. So if we compute the aggre-
gates for the originalb queries, we can clearly answer the originalb
queries plus the new2b− b−1 queries for a total of2b−1 queries.
Thus,Gt = Gf = 1 − b

2b−1
. As b → ∞ the gain approaches1

which is maximal.
The intuition behind this construction is that queries thatare the

disjunction of other queries lead to sharing opportunities. While the
first b base queries have significant amount of overlap, the overlap
is not precise creating additional fragments. It should be noted that
none of the2b − 1 fragments created from theb base queries are
actually used to answer any queries, instead theb base queries are
computed directly and used to compute the additional2b − 1 − b
queries. This is only possible because the aggregation functions
are duplicate insensitive and the overlap in data between the b base
queries does not affect the answer for the additional queries.

Furthermore, it is not necessary that theb base queries are explic-
itly requested by users. If only the additional queries wereissued,
those queries could still be answered using justb global fragments.
This means that the gain is realized when the query set is justthe
disjunction of a smaller number of overlapping fragments.

6.2 Duplicate Sensitive
This construction is similar to the previous construction,with b

base queries and2b− 1 fragments. Now we addc non-overlapping
queries such that data that satisfies one of thec queries and does not
match any other query (fromb or c). Thus, there arec additional
fragments for a total ofb + c fragments.

We now add2c − 1− c additional queries based solely on thec
non-overlapping queries by taking the disjunction of everypossible
combination of thec queries. These queries can be answered by
aggregating the answers from the originalc queries. Note, this does
not count any tuple twice since thec queries were non-overlapping.

We also add(2c − 1) × (b) more queries by taking the disjunc-
tion of every possible combination of thec queries and exactly one

query from theb base queries. For example, we takec1∪b1, c2∪b2,
c1 ∪ c2 ∪ b1 andc1 ∪ c2 ∪ b2, etc. One such additional query is
outlined in Figure 2(b). Since each of these additional queries is
only the disjunction of one query fromb, there is still no overlap,
so no data is counted multiple times.

In summary we haveb + c + 2c − 1− c + (2c − 1)× b queries
which could be answered usingb + c fragments. This leads to a
total gain of1− b+c

2c−1+b×2c , and fragment gain of1− b+c

2b−1+c
. As

b andc approach infinity, the total and fragment gains approach1
which is maximal.

Intuitively, thec queries are the source of sharing, since we are
able to construct many additional queries that are the disjunction
of multiple basec queries. Theb queries are the source of the
fragment gain, since the overlap they create increases the number
of fragments that are not needed.

7. EXPERIMENTAL EVALUATION
In this section we evaluate the performance of the various de-

composition methods we have presented. Rather than focus ona
specific workload from a speculative prototype system, we pursue
an experimental methodology that allows us to map out a range
of possible workloads, and we evaluate our techniques across that
range.

We present a random workload generator based on our analysis
of the gain potential in the previous section. This generator allows
us to methodically vary the key parameters of interest in evaluat-
ing our techniques: the workload size, and the degree ofpotential
benefit that our techniques can achieve. Within various settings of
these parameters, we then compare the relative costs and benefits of
our different techniques. After describing our workload generator,
we present our experimental setup and our results.

7.1 Workload Generators
We designed a workload generator that allows us to input the

desired sizeand total gain for a testF matrix. By controlling the
total gain we are able to test the effectiveness of our algorithms.
Using the combination of the two knobs we can explore various
workloads. We have two generators, one for duplicate sensitive
aggregates and one for duplicate insensitive aggregates, that create
testF matrices. The constructions from the previous section are
used to develop these generators.

For the duplicate insensitive generator we can calculate the num-
ber of basis rows,b, the number of fragments,f , and the number
of queries,q based on the desired matrix size and gain. Each of the
b basis rows maps to one of theb base queries in the constructor.
Instead of generating all2b − 1 fragments, we uniformly at ran-
domly select thef fragments from the set of possible fragments.
Analogously, we uniformly at randomly select unique additional
columns (queries) from the set of up to2b − b − 1 possible addi-
tional queries. The generation is finalized by randomly permutating
the order of the rows and columns.

This construction gives us a guarantee on the upper bound for
the minimum number of basis rows needed,b. The optimal answer
may in fact be smaller if the rows selected from the set of2b − 1
can be further reduced. Since the rows are chosen randomly, such
a reduction is unlikely. In our experiments, we attempt to check for
any reduction using the most effective algorithms we have.

The duplicate sensitive generator works much the same, except
with the addition of thec basis rows. The additional columns
(queries) are generated by ORing a random combination of thec
base queries and up to one of theb base queries. Values for the
number ofb andc queries are randomly chosen such that their sum
is the desired number of basis rows and such thatb is large enough



to ensure enough bitmaps can be generated andc is large enough
that enough combination of queries can be generated.

Also note that the originalb (andc) queries remain in the test ma-
trix for both generators; while this may introduce a bias in the test,
we are unable to remove these queries and still provide a reason-
able bound on the optimal answer. Without knowing the optimal
answer it is hard to judge the effectiveness of our algorithms.

7.2 Experimental Setup
We have implemented in Java all of the decomposition algo-

rithms presented in the previous sections. Our experimentswere
run on dual 3.06GHz Pentium 4 Xeon (533Mhz FSB) machines
with 2GB of RAM using the Sun Java JVM 1.5.06 on Linux. While
our code makes no specific attempt to utilize the dual CPUs, the
JVM may run the garbage collector and other maintenance tasks
on the second CPU. All new JVM instances are first primed with
a small matrix prior to any timing to allow the JVM to load and
compile the class files.

Furthermore, we have also implemented our techniques on top
of PIER [9], a DHT-based P2P query processor running on an ex-
perimental cluster. This has enabled us to verify the benefits of our
approach in a realistic setting, over a large-scale distributed query
processing engine.

For the LU/QR/SVD decompositions we utilize the JLAPACK
library, which is an automatic translation of the highly optimized
Fortran 77 LAPACK 2.0 library. We also tested calling the Fortran
library from C code. Our results showed that the Java versionwas
about the same speed for the SVD routines (in fact slightly faster
in some instances) while the more optimized LU and QR routines
were about twice as slow on Java. Overall, the runtime differences
are minor and do not effect our conclusions on relative speedor
effectiveness so we only present the results from the Java version.

We employ three key metrics in our study: (1) therelative effec-
tiveness(which is equivalent to the relative decrease in network
bandwidth used for computing the aggregates), (2) therunning
timesof the decomposition routine, and (3) theabsolute sizeof the
resulting matrixA′ which is directly proportional to the network
bandwidth.

In particular, the relative effectiveness is based on the result-
ing size ofA′, the estimated optimal answerk and the number of
queriesq. It is defined as(q−|A′|)÷(q−k) or the ratio of attained
improvement to that of an optimal algorithm.

We vary the ratio of the number of fragments to queries (whether
the test matrix is short, square, or long) from1/2 to 2. We repeat
each experiment ten times with different test matrices of the same
characteristics (size and total gain); the results presented include
the average and plus/minus one standard deviation using error-bars.

7.3 Results
We first present the result from the linear decomposition algo-

rithms, which prove effective and fast for linear aggregates. Next,
we show results for the duplicate insensitive heuristics where we
highlight the best and worst performing variants.1

Linear Aggregates.Our first set of experiments evaluate the linear
aggregate decompositions using the duplicate sensitive workload
generator. In Section 4 we noted that LU, QR, and SVD can be
used to compute toA′. They differ in their running times, and in
practice there is a concern that numerical instability (viarounding
during repeated floating-point arithmetic) can cause the technqiues

1Due to space constraints, we omit the results for the basic decomposition
algorithm which, not surprisingly, turns out to be ineffective in most practi-
cal situations.
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Figure 3: For 500x500 test matrices: (a) shows the resulting size ofA′.
The solid line at y=500 represents the starting size and the lower solid
line represents optimal. QR and SVD are always optimal and percisely
overlap each other and the lower solid line. (b) shows the running time
for each.

to incorrectly solve for the basis, and produce an inefficient F ′.
Figure 3 shows the resulting size ofA′, the overall effectiveness,
and the running time for the three algorithms using square matrices
(500 queries with 500 fragments).

QR and SVD give always optimal results by finding the low-
est rank and therefore the smallestA′. LU lagged in effectiveness
due to sensitivity to precision limitations, with low effectiveness
for matrices that had small potential gain and near optimal effec-
tiveness for matrices that had high potential. As expected,LU and
QR are substantially faster than SVD in our measurements by about
an order of magnitude. Figure 4 shows that runtime increasespoly-
nomially (O(q3)) as the size of the test matrix is increased.

In general, we found that the trends remain the same when the
shape of the test matrix is changed. QR and SVD remain optimal
and LU has an overall effectiveness ranging from 50-85%. As ex-
pected, the running times increase for matrices with additional rows
and decrease for matrices with fewer rows.

In summary, QR achieves the best tradeoff of effectiveness and
speed. While SVD has been designed to be more robust to floating
point precision limits, QR was able to perform just as well onthis
type of binary matrix. LU has no benefit, since it is just as fast as
QR, but not nearly as effective in finding the lowest rank.
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Figure 4: The running time as the size of square matrices are in-
creased.

Duplicate Insensitive Aggregates.Our second set of tests evaluate
the composition family of heuristics using the duplicate insensitive
workload generator. In Figure 5 we show the results. For clarity,
we include a representative selection of the algorithms, including
the BASIC COMPOSITIONand the ADD COMPOSITIONusing five
strategies (OR, MAP, MAD, MAW, and MRW). The strategies for
ADD COMPOSITIONwere chosen since they include: (1) the best
strategy when used with BASIC COMPOSITION, (2) the worse per-
forming, (3) the best performing and (4) two strategies similar to
the best performing. The strategies from Section 5 not shownhere
have similar shaped curves falling somewhere in the spectrum out-
lined by those shown.

The results show that ADD COMPOSITIONwith the MAP search
strategy is both the most effective and fastest, although not much
more effective than with the OR strategy (which is substantially
slower). This is somewhat surprising given how different the MAP
and OR strategies seem. Also note that in most cases the relative
effectiveness and the running time are inversely correlated. This
indicates that some algorithms spend a lot of time searchingand
producing little benefit.

As explained in Section 5 the gain is revealed through the COL-
LAPSE operation. However, before COLLAPSE can be performed
often a number of BLEND operations are needed before a COL-
LAPSE can be used. Search strategies that search for both COL-
LAPSEand BLEND at the same time tend to do better than strategies
that search for more and more BLENDs after each other.

For example the MSW search strategy will first search for any
possible COLLAPSE operations, and then search for BLEND oper-
ations separately. As an operation is performed the resulting row
is considered for further operations in the same search loop. Even
though COLLAPSEs are performed before BLENDs, once the strat-
egy begins performing BLENDs it will continue to exclusively per-
form them until no more can be found. As a result, it gets stuckin
this phase of the search loop. Even worse, it performs so many
BLEND operations that they block future COLLAPSE operations
and find a poor local minimum. This strategy often finds a local
minimum and ends after it executes only two or three search loops.

In contrast, the OR and MAP strategies are quick to search for
more COLLAPSEoperations after performing any operation. In the
case of MAP, all possible operations with the given set of rows is
computed, and they are then executed without further searching.
While this tends to need many search loops, the strategy willnot
get caught in a long stretch of BLENDs. In the case of OR, af-
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Figure 5: For 100x100 test matrices (a) shows the resulting size ofA′.
The solid line at y=100 represents the starting size and the lower solid
line represents optimal. (b) shows the relative effectiveness. (c) shows
the running time for each.
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Figure 6: The running time as the size of a square matrix is increased.

ter every operation the search loop ends, and the search restarts.
This strategy prevents getting stuck in the BLEND phase, but also
wastes time continually searching the same portion of the search
space over and over again after each operation. This causes the OR
strategy to be considerably slower than the MAP strategy.

Figure 6 shows the running times of the fastest basic composi-
tion and additive composition strategies, for various sized square
matrices. Unfortunately, none of the algorithms scale wellas the
matrix size is increased. However, the additive composition scales
considerably better than the basic composition algorithm.Effec-
tiveness, not shown, remains the same or slightly increasesas the
size of the matrix increases.

Note that the super-linear scaling is not unexpected. The prob-
lem of finding a minimal boolean basis has been shown to be equiv-
alent to finding the minimal number of maximal cliques in a bipar-
tite graph [12]. Finding the maximal bi-clique is not only NP-Hard,
but also is known to be hard to approximate. Our solution, while
not fully exhaustive, considers a very large number of possibilities
and produces near-optimal answers in our experiments.

In summary, the Add Composition algorithm with the MAP search
strategy is the clearly the winner. It is 70-90% effective infinding
the smallest basis set, and is often the fastest algorithm for duplicate
insensitive aggregates.

Results from our PIER Implementation. Figure 7 depicts the
total network communication savings achieved by our duplicate in-
sensitive techniques executing over the PIER P2P query proces-
sor [9] as a function of the total gain achievable in the querywork-
load. In this specific experiment, PIER was configured to use the
Bamboo DHT over1, 024 nodes, and run standard hierarchical
MAX queries; furthermore, each node had a randomly-generated
data distribution such that all nodes share the sameF matrix and
explicit synchronization was not needed.

The numbers shown are for a workload of100 concurrent MAX
aggregation queries. The “individual queries” line shows the base-
line communication overhead when the multi-query optimization
feature is not utilized. The “non-optimized” line uses the multi-
query optimization feature, butdoes not perform any actual shar-
ing, and instead uses the identity fragment matrix forF ′ — the line
just serves to illustrate the communication overhead of multi-query
optimization (essentially, the overhead of shipping the longer frag-
ment identifiers). Finally, the last line employs our Add-MAP opti-
mization strategy, demonstrating a very substantial, linear decrease
in communication cost as the achievable gain in the workloadin-
creases.
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Figure 7: Total network communication savings in PIER.

8. PRACTICAL MATTERS
Synchronizing F Across the Network. In order to ensure the
PSRs inA′ that are communicated from one node to another are
correctly decoded we must guarantee that every node has the same
F matrix. Otherwise, during the global aggregation or reconstruc-
tion phases, the PSRs inA′ may be incorrectly aggregated causing
the query results to be wrong. This is very important for correct-
ness of some decomposition algorithms such as the linear algebra
routines LU, QR, and SVD. For the other decomposition algorithms
presented there is an optimization to the architecture thateliminates
this requirement. We first describe a simple method for ensuring all
nodes have the sameF and then describe the optimization.

At the end of every aggregation window (after the node has col-
lected all the raw data necessary to compute the aggregates for that
window) each node,i, computes its localF matrix,Fi. Since each
node may have a different distribution of data, the matrixFi at node
i may differ from matrixFj at nodej 6= i. The globalF is the set
union of the rows in all localFi’s.

This can be computed like any other aggregate using a tree. All
the leaves of the tree send their completeFi to their parents. Their
parents compute the union over all their children, and send the re-
sult to their parent. At the root of this aggregation tree, the global
F is computed. The globalF is then multicast to every node on the
reverse path of the aggregation tree.

For subsequent windows only additions toF need to be transmit-
ted up or down the aggregation tree. Deletions can also be propa-
gated up the aggregation tree, however any node along the path can
stop the propagation (which prevents a change to the globalF ) if
it has at least one other child (or itself) still needing thatrow. The
addition or deletion of a query will also changeF . Query (column)
deletions require no communication (every node simply removes
the column forF ). The addition of a query (column) affects every
row in F , but in a limited fashion. Each row is either extended
with a 1, a 0, or both (which requires duplicating the old row). This
can be compactly transmitted as a modification bitmap with two
bits per existing row. The global modification bitmap is the OR
of every node’s individual modification bitmap which can also be
efficiently computed as an aggregate.

Once all nodes have the globalF , the general computation of the
query aggregates can begin. This synchronization method has the
negative effect of delaying all results for at least the duration of one
global aggregation plus one global multicast. In practice,the actual
delay must be sufficiently long to accommodate worst case delays
in the network.



The exact communication cost of this method is dependent on
the query/data workload. However, given a constant set ofq queries
and a set ofn nodes, we can show the worst case cost of synchro-
nizing F for each additional bitmap, and for how many windows
the system must remain unchanged to recoup the cost.

The worst case communication cost occurs if at least every leaf
node in the aggregation tree requires the addition of the same new
row in a given aggregation window. In this situation every node
will need to transmit the new row inF up and down the aggregation
tree which yields a cost of2× n× q bits per row. If only one node
requires the new row the cost is roughlyn× q +log(n)× q as only
one node is sending data up the aggregation tree.

Assume the size of each PSR isp bits. The savings realized from
sharing will never be less than the eventual total gain,Gt. During
each window,(1−Gt)× q aggregates are being computed instead
of q queries in the no-sharing scenario, for a benefit of((q − (1−
Gt)×q)×p)×n = Gt×q×n×p bits per window. We reach the
break-even point after 2×n×q

Gt×q×n×p
= 2

Gt×p
windows. If multiple

rows must be added at the same time, the number of windows till
the break-even point increases proportionally.

The basic decomposition and the algorithms for duplicate insen-
sitive aggregates do not require a globalF and can avoid the asso-
ciated costs. Instead, it is sufficient to annotate every entry in A′

with its corresponding binary row inF ′. Since every aggregation
tree is required to have an identifier (such as a query identifier) to
distinguish one tree from another, the basis row entry can beused as
the identifier. This is possible since the reconstruction phase does
not any require additional information about the decomposition.

While this optimization does not apply to linear aggregatesthere
are other techniques that could be considered. For some query
workloads a static analysis of the query predicates may be suffi-
cient to compute a superset ofF . This can be further extended to
handle the actual data distribution by having nodes compactly com-
municate which portions of the data space they have. We leavea
complete analysis of this optimization for future work.

Complex Queries. Our query workload to this point might seem
limited: sets of continuous queries that are identical except for their
selection predicates. In this section we observe that our techniques
can be applied to richer mixes of continuous queries, as a comple-
ment to other multi-query optimization approaches.

For example, [11, 10] discuss optimizing sharing with queries
that have different window parameters. Their methods partition the
stream into smaller windows that can later be combined to answer
each of the queries. One can view the window-share optimiza-
tion as query rewriting, producing a set of queries with the same
window parameters, which are post-processed to properly answer
each specific query. In that scenario, our technique is applied to
the rewritten queries. Similarly, queries with different grouping at-
tributes can also be optimized for sharing. In that case, thesmallest
groups being calculated would be treated as separate partitions of
the data that are then optimized separately by our techniques. After
processing the results can be rolled-up according to each queries
specification.

Our approach does not depend on a uniform aggregation expres-
sion across queries. Queries that include multiple aggregate func-
tions, or the same function over different attributes, or queries that
require different aggregate functions can be optimized as one in our
approach – as long as the same decomposition can be used for all
the aggregate expressions. In these cases, the PSR contained in A
or A′ is the concatenation of each PSR needed to answer all aggre-
gate functions. In those cases where different decompositions must
be used (e.g., one function is a MAX and another is a COUNT)

then they can be separately optimized and executed using ourtech-
niques.

Our results showed that there is a clear choice of which opti-
mization technique to use for most classes of aggregate functions.
However, if a function is both linear and duplicate-insensitive, it is
unclear which technique to apply. While few functions fall in this
category (see Section 2.2), for those functions the selection of algo-
rithm will be dependent on the specific workload. Characterizing
the tradeoffs among workloads for these unusual functions remains
an open problem.

9. CONCLUSIONS
We have introduced the problem of optimizing sharing for dis-

tributed aggregation queries with different selection predicates. We
have demonstrated that such sharing can be revealed throughthe
dynamic analysis of a binary fragment matrix capturing the connec-
tions between data and query predicates and the algebraic proper-
ties of the underlying aggregate functions. For the case of linear ag-
gregates, we show that the sharing potential can be optimally recov-
ered using standard linear-algebra techniques. Unfortunately, for
duplicate-insensitive aggregates our sharing problem is NP-hard;
thus, we propose a novel family of heuristic search algorithms that
is shown to perform well for moderately-sized matrices.

This work was funded by NSF Grant IIS-020918 and a gift from Microsoft.
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