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ABSTRACT

In the database community, work on information extraction (IE)
has centered on two themes: how to effectively manage IE tasks,
and how to manage the uncertainties that arise in the IE process
in a scalable manner. Recent work has proposed a probabilistic
database (PDB) based declarative IE system that supports a lead-
ing statistical IE model, and an associated inference algorithm to
answer top-k-style queries over the probabilistic IE outcome. Still,
the broader problem of effectively supporting general probabilis-
tic inference inside a PDB-based declarative IE system remains
open. In this paper, we explore the in-database implementations of
a wide variety of inference algorithms suited to IE, including two
Markov chain Monte Carlo algorithms, Viterbi and sum-product al-
gorithms. We describe the rules for choosing appropriate inference
algorithms based on the model, the query and the text, considering
the trade-off between accuracy and runtime. Based on these rules,
we describe a hybrid approach to optimize the execution of a sin-
gle probabilistic IE query to employ different inference algorithms
appropriate for different records. We show that our techniques can
achieve up to 10-fold speedups compared to the non-hybrid solu-
tions proposed in the literature.
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1 Introduction

For most organizations, textual data is an important natural re-
source to fuel data analysis. Information extraction (IE) techniques
parse raw text and extract structured objects that can be integrated
into databases for querying. In the past few years, declarative in-
formation extraction systems [1, 2, 3, 4] have been proposed to
effectively manage IE tasks. The results of IE extraction are in-
herently uncertain, and queries over those results should take that
uncertainty into account in a principled manner.

Research in probabilistic databases (PDBs) has been exploring
scalable tools to reason about these uncertainties in the context of
structured query languages and query processing [5, 6, 7, 8, 9, 10,
11, 12].

Our recent work [4, 13] has proposed a PDB system that natively
support a leading statistical IE model (conditional random fields
(CRFs)), and an associated inference algorithm (Viterbi). It shows
that the in-database implementation of the inference algorithms en-
ables: (1) probabilistic relational queries that returns top-k results
or distributions over the probabilistic IE outcome; (2) the integra-
tion between the relational and inference operators, which leads to
significant speed-up by performing query-driven inference.

While this work is an important step towards building a proba-
bilistic declarative IE system, the approach is limited by the capa-
bilities of the Viterbi algorithm, which can only handle top-k-style
queries over a limited class of CRF models: linear chain models,
which do a poor job capturing features like repeated terms. Dif-
ferent inference algorithms are needed to deal with non-linear CRF
models, such as skip-chain CRF models, complex IE queries that
induce cyclic models over the linear-chain CRFs, and marginal in-
ference queries that produce richer probabilistic outputs than top-k.
The broader problem of effectively supporting general probabilistic
inference inside a PDB-based declarative IE system remains open.

In this paper, we first explore the in-database implementation
of a number of inference algorithms suited to a broad variety of
models and outputs: two variations of the general sampling-based
Markov chain Monte Carlo (MCMC) inference algorithm—Gibbs
Sampling and MCMC Metropolis-Hastings (MCMC-MH)—in ad-
dition to the Viterbi and the Sum-Product algorithms. We compare
the applicability of these four inference algorithms and study the
data and the model parameters that affect the accuracy and runtime
of those algorithms. Based on those parameters, we develop a set
of rules for choosing an inference algorithm based on the charac-
teristics of the model and the data.

More importantly, we study the integration of relational query
processing and statistical inference algorithms, and demonstrate
that, for SQL queries over probabilistic extraction results, the proper
choice of IE inference algorithm is not only model-dependent, but



also query- and text-dependent. Such dependencies arise when re-
lational queries are applied to the CRF model, inducing additional
variables, edges and cycles; and when the model is instantiated over
different text, resulting in model instances with drastically different
characteristics.

To achieve good accuracy and runtime performance, it is imper-
ative for a PDB system to use a hybrid approach to IE even within a
single query, employing different algorithms for different records.
In the context of our CRF-based PDB system, we describe query
processing steps and an algorithm to generate query plans that ap-
ply hybrid inference for “SQL+IE” queries.

Finally, we describe example queries and experiment results show-
ing that such hybrid inference techniques can improve the runtime
of the query processing by taking advantage of the appropriate in-
ference methods for different combinations of query, text, and CRF
model parameters.

Our key contributions can be summarized as follows:

e We show the efficient implementation of two MCMC in-
ference algorithms, in addition to the Viterbi and the Sum-
Product algorithms, and we identify a set of parameters and
rules for choosing different inference algorithms over models
and datasets with different characteristics;

e We describe query processing steps and an algorithm to gen-
erate query plans that employ hybrid inference over different
text within the same query, where the selection of the infer-
ence algorithm is based on all three factors of data, model,
and query;

e Last, we evaluate our approaches and algorithms using three
real-life datasets: DBLP, NYTimes, and Twitter. The results
show that our hybrid inference techniques can achieve up to
10-fold speedups compared to the non-hybrid solutions pro-
posed in the literature.

Based on our experience in implementing different inference al-
gorithms, we also present four design guidelines for implementing
statistical methods in the database in the Appendix.

2 Related Work

In the past few years, declarative information extraction systems [1,
2, 3, 4, 13] have been proposed to effectively manage information
extraction (IE) tasks. The earlier efforts in declarative IE [1, 2, 3]
lack a unified framework supporting both a declarative interface as
well as the state-of-the-art probabilistic IE models. Ways to handle
uncertainties in IE have been considered in [14, 15]. A probabilis-
tic declarative IE system has been proposed in [4, 13], but it only
supports the Viterbi algorithm, which is unable to handle complex
models that arise naturally from advanced features and relational
operators.

In the past decade, there has been a groundswell of work on
Probabilistic Database Systems (PDBS) [5, 6, 7, 8, 9, 10, 11, 12].
As shown in previous work [8, 10, 12], Graphical Modeling tech-
niques can provide robust statistical models that capture complex
correlation patterns among variables, while, at the same time, ad-
dressing some computational efficiency and scalability issues as
well. In addition, [8] showed that other approaches to represent
and handle uncertainty in database [5, 6], can be unified under the
framework of Graphical Models, which express uncertainties and
dependencies through the use of random variables and joint proba-
bility distribution. However, there is no work addressing the prob-
lem of effectively supporting and optimizing different probabilistic
inference algorithms in a single PDB, especially in the IE setting.

3 Background

This section covers our definition of a probabilistic database, the
conditional random fields (CRF) model and the different types of
inference algorithms over CRF models in the context of informa-
tion extraction. We also introduce a template for the types of IE
queries studied in this paper.

3.1 Probabilistic Database

As we described in [10], a probabilistic database DBPconsists of
two key components: (1) a collection of incomplete relations R
with missing or uncertain data, and (2) a probability distribution F'
on all possible database instances, which we call possible worlds,
and denote by pwd(DB?). An incomplete relation R €R is defined
over a schema A% U AP comprising a (non-empty) subset A% of de-
terministic attributes (that includes all candidate and foreign key
attributes in R), and a subset A” of probabilistic attributes. Deter-
ministic attributes have no uncertainty associated with any of their
values. A probabilistic attribute A” may contains missing or un-
certain values. The probabilistic distribution F' of these missing or
uncertain values is represented by a probabilistic graphical model,
such as Baysian Networks or Markov Random Fields. Each possi-
ble database instance is a possible completion of the missing and
uncertain data in R.

3.2 Conditional Random Fields

The linear-chain CRF [16, 17], similar to the hidden markov model,
is a leading probabilistic model for solving IE tasks. In the context
of IE, a CRF model encodes the probability distribution over a set
of label random variables (RVs) Y, given the value of a set of foken
RVs X. We denote an assignment to X by x and to Y by y. In
a linear-chain CRF model, label y; is correlated only with label
y;—1 and token x;. Such correlations are represented by the feature
functions {fk (yi, Yi—1, {Ei)}?zl .

EXAMPLE 1. Figure 1(a) shows an example CRF model over
an address string x '2181 Shattuck North Berkeley CA USA’. Ob-
served (known) variables are shaded nodes in the graph. Hidden
(unknown) variables are unshaded. Edges in the graph denote sta-
tistical correlations. The possible labels are Y = {apt.num, street-
num, streetname, city, state, country}. Two possible feature func-
tions of this CRF are:

[zi appears in a city list] - [y; = city]
[z is an integer] - [y; = apt.num]

F1(Yisyi—1, %)
f2(Yiyi—1,25) =
lyi—1 = streetmame]

A segmentation y = {y1,...,yr} is one possible way to tag
each token in x of length 7" with one of the labels in Y. Figure 1(d)
shows two possible segmentations of x and their probabilities.

DEFINITION 3.1. Let {fx(vi,yi—1, i)}y be a set of real-
valued feature functions, and A = {\,} € RX be a vector of
real-valued parameters, a CRF model defines the probability dis-
tribution of segmentations 'y given a specific token sequence X:

T K
1
Py [ %) = ——=exp{D D> Mefr(wirvi1,2:)}, )
Z(x) i=1 k=1

where Z(x) is a standard normalization function that guarantees
the probability distribution sums to I over all possible extractions.
0

3.3 Relational Representation of Text and CRF

‘We implement IE algorithms over the CRF model within a database
using the relational representations of text and the CRF-based dis-
tribution in the token table TOKENTBL and the factor table MR
respectively.



Y=labels
(a)
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2181 Shattuck North  Berkeley CA USA

1|1 0 2181 2181 (DIGIT) null street num 22

2 |1 1 Shattuck 2181 (DIGIT) ' null street name 5

3 1 2 North ®)

4 1 3 Berkeley Berkeley street street name 10

5 1 4 CA Berkeley street city 25

6 1 5 USA
x 2181 Shattuck North Berkeley CA USA
yl streetnum street name city city state country (0.6) (d)
y2 streetnum street name street name city state country (0.1)

Figure 1: (a) Example CRF model; (b) Example TOKENTBL table;
(c) Example MR table; (d) Two possible segmentations y1, y2.

Token Table: The token table TOKENTBL, as shown in Figure 1(b),
is an incomplete relation R in DBP, which stores a set of docu-
ments or text-strings D as a relation in a database, in a manner akin
to the inverted files commonly used in information retrieval.

TOKENTBL (id, docID, pos, token, label?)

TOKENTBL contains one probabilistic attribute—label”, and the
main goal of IE is to perform inference on label”. As shown in the
schema above, each tuple in TOKENTBL records a unique occur-
rence of a token, which is identified by the text-string ID (docID)
and the position (pos) the token is taken from. The id field is simply
a row identifier for the token in TOKENTBL.

(c)

Factor Table: The probability distribution F over all possible “worlds”

of TOKENTBL can be computed from the MR. The MR is a mate-
rialization of the factor tables in the CRF model for all the tokens
in the corpus D. The factor tables @[y;, yi—1 | :], as shown in
Figure 1(c), represent the correlation between x;, y;, and y; 1, and
are computed by the weighted sum of a set of feature functions in
the CRF model: (;S[yi, Yi—1 ‘ LEZ} = Zle )\kfk(yi, Yi—1, .Tl) As
in the following schema, each unique token string x; is associated
with an array, which contains a set of scores ordered by {prevLabel,
label}.

MR (token, score ARRAYT])

3.4 Inference Queries over a CRF Model

There are two types of inference queries over the CRF model [17].

o Top-k Inference: The top-k inference computes the label
sequence y (i.e., extraction) with the top-k highest probabil-
ities given a token sequence x from a text-string d. Con-
strained top-k inference [18] is a special case, where the top-
k extractions are computed, conditioned on a subset of the
token labels, that are provided as evidence.

e Marginal Inference: Marginal inference computes a marginal
probability p(ye, Ye+1, ---, Yt+k|X, S) over a single label or a
sub-sequence of labels conditioned on the set of evidence
s = {s1,..., 7}, where s; is either NULL (i.e., no evidence)
or the evidence label for y;.

Many inference algorithms are known that can answer the above
inference queries over the CRF models, varying in their effective-
ness for different CRF characteristics (e.g., shape of the graph). In
the next sections, three inference algorithms will be described: Vi-
terbi, Sum-Product, Markov chain Monte Carlo (MCMC) methods.

3.5 Viterbi Algorithm

Viterbi, a special case of the Max-Product algorithm [19, 20] can
compute top-k inference for linear-chain CRF models. Viterbi is a
dynamic programming algorithm that computes a two dimensional
V matrix, where each cell V(i,y) stores a ranked list of partial
label sequences (i.e., paths) up to position ¢ ending with label y
and ordered by score. Based on Equation (1), the recurrence to
compute the top-1 segmentation is as follows:

max,/ (V(i — 1,9")

+Ei<:1 )\kfk(y,y/7$i))7 if 4
0, it i

V(i,y) = >0 2)

1.
The top-1 extraction y*can be backtracked from the maximum en-
try in V(T yr), where T is the length of the token sequence x.
The complexity of the Viterbi algorithm is O(T - |Y'|?), where |Y|
is the number of possible labels.

The constrained top-k inference can be computed by a variant of
the Viterbi algorithm which restricts the chosen labels y to conform
with the evidence s.

3.6 Sum-Product Algorithm

Sum-product (i.e., belief propagation) is a message passing algo-
rithm for performing inference on graphical models, such as CRF [19].
The simplest form of the algorithm is for tree-shaped models, in
which case the algorithm computes exact marginal distributions.

The algorithm works by passing real-valued functions called mes-
sages along the edges between the nodes. These contain the “influ-
ence” that one variable exerts on another. A message from a vari-
able node y,, to its “parent” variable node y,, in a tree-shaped model
is computed by summing the product of the messages from all the
“child” variables of y,, in C'(y,) and the feature function f (Y., Yv)
between y,, and y,, over variable y,:

I1

Pyu—ya ) = D F(Yur v0)
Yv yz*bec(yv>

Before starting, the algorithm first designates one node as the
root; any non-root node which is connected to only one other node
is called a leaf. In the first step, messages are passed inwards: start-
ing at the leaves, each node passes a message along the edge to-
wards the root node. This continues until the root has obtained
messages from all of its adjoining nodes. The marginal of the root
note can be computed at the end of the first step.

The second step involves passing the messages back out: starting
at the root, messages are passed in the reverse direction, until all
leaves have received their messages. Like Viterbi, the complexity
of the sum-product algorithm is also O(T - |Y|?).

Variants of the Sum-Product algorithm for cyclic models require
either an intractable junction-tree step, or a variational approxima-
tion such as loopy belief propagation (BP). In this paper, we do
not study these variants further as they are either intractable (junc-
tion tree), or can fail to converge (loopy BP) on models with long-
distance dependencies such as those we discussed in this paper.

3.7 MCMC Inference Algorithms

Markov chain Monte Carlo (MCMC) methods are a class of ran-
domized algorithms for estimating intractable probability distribu-
tions over large state spaces by constructing a Markov chain sam-
pling process that converges to the desired distribution. Relative
to other sampling methods, the main benefits of MCMC methods
are that they (1) replace a difficult sampling procedure from a high-
dimensional target distribution 7(w) that we wish to sample with
an easy sampling procedure from a low-dimensional local distri-
bution ¢(-|w), and (2) sidestep the # P-hard computational prob-
lem of computing a normalization factor. We call ¢(-|w) a “pro-

By —yqy (Yo)- (3)



GIBBS (N)
wo  INIT(); w < wo; / initialize
for ide = 1,..., N do
1 < idx%mn; // propose variable to sample next
w’ ~ w(w; | w_;) / generate sample
return next w’ // return a new sample
w < w’; // update current world
endfor

NN R W —

Figure 2: Pseudo-code for Gibbs sampling algorithm over a model
with n variables.

posal distribution”, which—conditioned on a previous state w—

probabilistically produces a new world w’ with probability g(w'|w).

In essence, we use the proposal distribution to control a random
walk among points in the target distribution. We review two MCMC
methods we will adapt to our context in this paper: Gibbs sampling
and Metropolis-Hastings (MCMC-MH).

3.7.1 Gibbs Sampling

Let w = (w1, w2,...,ws) be a set of n random variables, dis-
tributed according to 7 (w). The proposal distribution of a specific
variable wj is its marginal distribution ¢(-|w) = m(w;|w—;) con-
ditioned on w_;, which are the current values of the rest of the
variables.

The Gibbs sampling algorithm (i.e., Gibbs sampler) first gener-
ates the initial world wo, for example, randomly. Next, samples
are drawn for each variable w; € w in turn, from the distribution
m(w;i|w—;). Figure 2 shows the pseudo-code for the Gibbs sampler
that returns N samples. In Line 4, ~ means a new sample w’ is
drawn according to the proposal distribution 7 (w;|w_;).

3.7.2 Metropolis-Hastings (MCMC-MH)

Like Gibbs, the MCMC-MH algorithm first generates an initial
world wo (e.g., randomly). Next, samples are drawn from the pro-
posal distribution w’ ~ q(w;|w), where a variable w; is randomly
picked from all variables, and g(w;|w) is a uniform distribution
over all possible values. Different proposal distribution g(w;|w)
can be used, which results in different convergence rates. Lastly,
each resulting sample is either accepted or rejected according to a
Bernoulli distribution given by parameter o

T (w')g(w|w')
m(w)q(w'|w)
The acceptance probability is determined by the product of two
ratios: the model probability ratio 7r(w’) /7 (w), which captures the
relative likelihood of the two worlds; and the proposal distribution
ratio g(w|w’)/q(w’|w), which eliminates the bias introduced by
the proposal distribution.

) “)

a(w’, w) = min(1,

3.8 Query Template

Over the CRF-based IE from text, the queries we consider are prob-
abilistic queries, which inference over the probabilistic attribute
label? in the TOKENTBL table. Each TOKENTBL is associated
with a specific CRF model stored in the MR table. Such CRF-
based IE is captured by a sub-query with logic that produces the
IE results from the base probabilistic TOKENTBL tables. The sub-
query consists of a relational part (. over the probabilistic token
tables TOKENTBL and the underlying CRF models, followed by an
inference operator QQ;n¢. A canonical “query template” captures
the logic for the “SQL+IE” sub-query in Figure 3. It supports SPJ
queries, aggregate conditions and two types of inference operators,
Top-k and Marginal, over the probabilistic TOKENTBL tables.

The relational part of a “SQL+IE” query Q. first specifies, in
the FROM clause, the TOKENTBL table(s) over which the query and
extraction is performed.

SELECT Top-k(T1.docID, [T1.poslexist]) |
[Marginal(T1.docID, [T1.poslexist])] |
[Top-k(T1.docID, T2.docID,[T1l.pos|T2.poslexist])]
[Marginal(T1.docID,T2.docID, [T1.pos|T2.pos|exist])]

FROM TokenTbll T1[, TokenTbl2 T2]

WHERE T1.label = ’barl’ [and Tl.token = ’fool’]
[and T1.docID = X] [and Ti.pos = Y]

[and T1.label = T2.label] [and T1.token = T2.token]

[and T1.docID = T2.docID]
GROUP BY T1.docID[, T2.docID]
HAVING [aggregate condition]

Figure 3: The “SQL+IE” query template.

The WHERE clause lists a number of possible selection as well as
join conditions over the TOKENTBL tables. These conditions when
involve label? are probabilistic conditions, and deterministic oth-
erwise. For example, a probabilistic condition label=’person’
specifies the entity types we are looking for is ’person’, while
a deterministic condition token=’Bill’ specifies the name of the
entity we are looking for is >’Bill’. We can also specify a join con-
dition T1.token=T2.token and T1.label=T2.label that two
documents need to contain the same entity name with the same en-
tity type.

In the GROUP BY and the HAVING clause, we can specify condi-
tions on an entire text “document”. An example of such aggregate
condition over a bibliography document can be that all title to-
kens are in front of all the author tokens. Following the Possi-
ble World Semantics [5], the execution of these relational opera-
tors involve modification to the original graphical models as will
be shown in Section 4.1.

The inference part Q;n ¢, of a “SQL+IE” query, takes the docI D,
the pos, and the CRF model resulting from Q.. as input. The in-
ference operation is specified in the SELECT clause, which can be
either a Top-k or a Marginal inference. The inference can be
computed over different random variables in the CRF model: (1)
a sequence of tokens (e.g., a document) specified by docID; or
(2) a token at a specific location specified by docID and pos; or
(3) the “existence” (exist) of the result tuple. The “existence” of
the result tuple becomes probabilistic with a selection or join over
a probabilistic attribute, where exist variables are added to the
model [10].

For example, the inference Marginal (T1.docID,T1.pos), for
each position (T1.docID,T1.pos) computed from Q,., returns
the distribution of the label variable at that position. The infer-
ence Marginal (T1.docID,exist) computes the marginal distri-
bution of exist variable for each result tuple. We can also specify
an inference following a join query. For example, the inference
Top-k(T1.docID,T2.docID), for each document pair
(T1.docID,T2.docID), returns the top-k highest probability joint
extractions that satisfy the join constraint.

4 In-Database MCMC Inference

In this section, we first describe IE models that are cyclic (e.g., the
skip-chain CRF model) and review the way that simple relational
queries can often induce cyclic models—even over text that is itself
modeled by simple linear-chain CRFs. Such cyclic models call for
an efficient general-purpose inference algorithm such as an MCMC
algorithm. Next, we describe our efficient in-database implemen-
tation of the Gibbs sampler and MCMC-MH. Finally, we discuss
query-driven sampling techniques that push the query constraints
into the MCMC sampling process.



IBM Corp. said that IBM for IBM.
Figure 4: A skip-chain CRF model that includes skip-edges between
non-consecutive tokens with the same string (e.g.,“IBM”).

CEO Bill ~~Gates talked about (a)

assigned by Bill Clinton today

Bill Clinton_ met __with Bill (b)

assigned by Bill Clinton today

The Viterbi Algorithm Dave Forney
Figure 5: (a) and (b) are example CRF models after applying a join
query over two different pairs of documents. (c) is the resulting CRF
model from a query with an aggregate condition.

4.1 Cycles from IE Models and Queries

In many IE tasks, good accuracy can only be achieved using non-
linear CRF models like skip-chain CRF models, which model the
correlation not only between the labels of two consecutive tokens
as in linear-chain CRF, but also between those of non-consecutive
tokens. For example, a correlation can be modeled between the la-
bels of two tokens in a sentence that have the same string. Such
a skip-chain CRF model can be seen in Figure 4, where the corre-
lation between non-consecutive labels (i.e., skip-chain edges) form
cycles in the CRF model.

In simple probabilistic databases with independent base tuples,
the “safe plans” [5] give rise to tree-structured graphical models [8],
where the exact inference is tractable. However, in a CRF-based IE
setting, an inverted-file representation of text in TOKENTBL inher-
ently has cross-tuple correlations. Thus, even queries with “safe
plans” over the simple linear-chain CRF model, result in cyclic
models and intractable inference problems.

For example, the following query computes the marginal infer-
ence Marginal (T1.docID,T2.docID,exist), which returns pairs
of docIDs and the probabilities of the existence (exist) of their
join results. The join query is performed between each document
pair on having the same token strings labeled as "person’. The join
query over the base TOKENTBL tables adds cross-edges to the pair
of linear-chain CRF models underlying each document pair. Fig-
ure 5(a),(b) shows two examples of the resulting CRF model after
the join query over two different pairs of documents. As we can see,
the CRF model in (a) is tree-shaped, and the one in (b) is cyclic.

Q1: [Probabilistic Join Marginal]

SELECT Marginal(T1l.docID,T2.docID,exist)

FROM TokenTbll T1, TokenTbl2 T2

WHERE T1.label = T2.label and Tl.token = T2.token
and Tl.label = ’person’;

Another example is a simple query to compute the top-k extrac-
tion conditioned on an aggregate constraint over the label sequence
of each document (e.g., all “title” tokens are in front of “author” to-
kens). This query induces a cyclic model as shown in Figure 5(c).

Q2: [Aggregate Constraint Top-k]

CREATE FUNCTION Gibbs (int) RETURN VOID AS

$3

-- compute the initial world: genInitWorld()

insert into MHSamples

select setval(’world_id’,1) as worldId, docId, pos, token,
trunc(random() *num_label+1l) as label

from tokentbl;

G WN -

(=)

7 -- generate N sample proposals: genProposals()
8 insert into Proposals
with X as (
select foo.id, foo.docID, (tmp\ibar.doc_len) as pos
9 from (
select id, ((id-1)/($1/numDoc)+1) as docID,
((id-1)\%($1/numDoc)) as tmp
10 from generate_series(1,$1) id) foo, doc_id_tbl bar
11 where foo.doc_id = bar.doc_id
)
12 select X.id,S.docId,S.pos,S.token, null as label,
null::integer[] as prevWorld, null::integer[] as factors
13 from X, tokentbl S
14 where X.docID = S.docID and X.pos = S.pos;

15 -- fetch context: initial world and factor tables

16 update proposals S1

17 set prev_world = (select * from getInitialWorld(S1l.docId))
18 from proposals 52

19 where S1.docId <> S2.docId and S1.id = S2.id+1;

20 update proposals S1

21 set factors = (select * from getFactors(S1.docId))

22  from proposals S2

23 where S1.docId <> S2.docId and S1.id = S2.id+1;

24 -- generate samples: genSamples()

25 insert into MHSamples

26 select worldId, docId, pos, token, label
27 from (

28 select nextval(’world_id’) worldId, docId, pos, token, label,

getalpha_agg((docId,pos,label,prev_world,factors)
::getalpha_io) over (order by id) alpha

29 from (select * from proposals order by id) foo) foo;

30 $$

31 LANGUAGE SQL;

Figure 6: The SQL implementation of Gibbs sampler takes in-
put N — the number of samples to generate.

SELECT Top-k(T1.docID)

FROM TokenTbll T1

GROUP BY docID

HAVING [aggregate constraint] = true;

Next, we describe general inference algorithms for such cyclic
models.

4.2 SQL Implementation of MCMC Algorithms

Both the Gibbs sampler and the MCMC-MH algorithm are itera-
tive algorithms, which contain three main steps: 1) initialization,
2) generating proposals, and 3) generating samples. They differ in
their proposal and sample generation functions.

We initially implemented the MCMC algorithms in the SQL pro-
cedure language provided by PostgreSQL—PL/pgSQL—using it-
erations and three User Defined Functions (UDF’s):

e GENINITWORLD() to compute the initialized world (line 1
for Gibbs in Figure 2);

e GENPROPOSAL() to generate one sample proposal (line 3 for
Gibbs in Figure 2);

e GENSAMPLE() to compute the corresponding sample for a
given proposal (line 4 for Gibbs in Figure 2).

However, this implementation ran hundreds of times slower than
the Scala/Java implementation described in [12]. This is mainly
because calling UDF’s iteratively a million times in a PL/pgSQL
function is similar to running a SQL query a million times. A more



efficient way is to “decorrelate”, and run a single query over a mil-
lion tuples. The database execution path is optimized for this ap-
proach. With this basic intuition, we re-implemented the MCMC
algorithms, where the iterative procedures are translated into set
operations in SQL.

The efficient implementation of the Gibbs sampler is shown in
Figure 6, which uses the feature of window functions introduced in
PostgreSQL 8.4. MCMC-MH can be implemented efficiently in a
similar way with some simple adaptations.

This implementation achieves similar (within a factor of 1.5)
runtime compared to the Scala/Java implementation of the MCMC
algorithms, as shown in the results in Section 7.1.

4.3 Query-Driven MCMC Sampling

Previous work [4] has developed query-driven techniques to inte-
grate probabilistic selection and join conditions into the Viterbi al-
gorithm over the linear-chain CRF model. However, the kind of
constraint that Viterbi can handle is limited and specific to the Vi-
terbi and potentially the Sum-Product algorithm. In this section, we
explore query-driven techniques for the sampling-based MCMC in-
ference algorithms. Query-driven sampling is needed to compute
inference conditioned on the query constraints. Such query con-
straints can be highly selective, where most samples generated by
the vanilla MCMC methods do not “qualify” (i.e., satisfy the con-
straints). Thus, we need to adapt the MCMC methods by push-
ing the query constraints into the sampling process. Note that our
adapted, query-driven MCMC methods still converge to the target
distribution as long as the proposal function can reach every “qual-
ified” world in a finite number of steps.

There are three types of query constraints: (1) selection con-
straints; (2) join constraints; and (3) aggregate constraints. Both
(1) and (2) were studied for Viterbi in [4]. The following query
contains an example selection constraint, which is to find the top-k
highest likelihood extraction that contains a ’person’ entity "Bill’.

Q3: [Selection Constraint Top-kl]

SELECT Top-k(T1.docID)

FROM TokenTbll T1

WHERE  token = ’Bill’ and label = ’person’

An example of a join constraint can be found in @1 in Sec-
tion 4.1, and an example of an aggregate constraint can be found
in @2 in the same Section.

The naive way to answer those conditional queries using MCMC
methods is to: first, generate a set of samples using Gibbs sampling
or MCMC-MH regardless of the query constraint; second, filter out
the samples that do not satisfy the query constraint; last, compute
the query over the remaining “qualified” samples.

In contrast, our query-driven sampling approach pushes the query
constraints into the MCMC sampling process by restricting the
worlds generated by GENINITWORLD(), GENPROPOSALS() and
GENSAMPLES() functions, so that all the samples generated sat-
isfy the query constraint. One of the advantages of the MCMC al-
gorithms is that the proposal and sample generation functions can
naturally deal with the deterministic constraints, which might in-
duce cliques with high tree-width in the graphical model. Such
cliques can easily “blow up” the complexity of known inference
algorithms [19]. We exploit this property of MCMC to develop
query-driven sampling techniques for different types of queries.

The query-driven GENINITWORLD() function generates an ini-
tial world that satisfies the constraint. The first “qualified” sample
can either be specified according to the query or generated from
random samples.

The query-driven GENPROPOSAL() and GENSAMPLES() func-
tions are called iteratively to generate new samples that satisfy the

constraint. The next “qualified” jump (i.e., new sample) can be
generated by restricted jumps according to the query constraints or
from random jumps.

5 Choosing Inference Algorithms

Different inference algorithms over the probabilistic graphical mod-
els have been developed in a diverse range of communities (e.g.,
natural language processing, machine learning, etc). The charac-
teristics of these inference algorithms (e.g., applicability, accuracy,
convergence rate, runtimes) over different model structures have
since been studied to help modeling experts select an appropriate
inference algorithm for a specific problem [19].

In this section, we first compare the characteristics of the four
inference algorithms we have developed over the CRF model. Next
we introduce parameters that capture important properties of the
model and data. Using these parameters, we then describe a set of
rules to choose among different inference algorithms.

5.1 Comparison between Inference Algorithms

We have implemented four inference algorithms over the CRF model
for IE applications: (1) Viterbi, (2) Sum-Product, and two sampling-

based MCMC methods: (3) Gibbs Sampling and (4) MCMC Metropolis-

Hastings (MCMC-MH). In Table 1, we show the applicability of
these algorithms to different inference tasks (e.g. top-k, or marginal)
on models with different structures (e.g., linear-chain, tree-shaped,
cyclic).

As we can see, Viterbi, Gibbs and MCMC-MH can all com-
pute top-k queries over the linear-chain CRF models; sum-product,
Gibbs and MCMC-MH can all compute marginal queries over the
linear-chain and tree-shaped models; while only MCMC algorithms
can compute queries over cyclic models. Although there are heuris-
tic adaptations of the Sum-Product algorithm for cyclic models,
past literature found MCMC methods to be more effective in han-
dling complicated cyclic models with long-distance dependencies
and deterministic constraints [21, 22]. In terms of handling query
constraints, Viterbi and Sum-Product algorithms can only handle
selection constraints, Gibbs sampling can handle selection con-
straints and aggregate constraints that do not break the distribution
into disconnected regions. On the other hand, MCMC-MH can
handle arbitrary constraints in the “SQL+IE” queries.

5.2 Parameters

Next, we introduce a list of parameters that affect the applicability,
accuracy and runtime of the four inference algorithms that we have
just described:

1. Data Size: the size of the data is measured by the total num-
ber of tokens in information extraction;

2. Structure of Grounded Models: the structural properties of
the model instantiations over data:

(a) shape of the model (i.e., linear-chain, tree-shaped, cyclic),

(b) maximum size of the clique,

(c) maximum length of the loops (e.g., skip-chain in linear
CRF)

3. Correlation Strength: the relative strength of transitional
correlation between different label variables;
4. Label Space: the number of possible labels.

The data size affects the runtime for all the inference algorithms.
The runtime of Viterbi and Sum-Product algorithms is linear to the
data size. The MCMC algorithms are iterative optimizations that
can be stopped at any time, but the number of samples needed to
converge depend linearly on the size of the data.



inference Top-k Marginal Constraints
algorithm Chain | Tree | Cyclic Chain Tree | Cyclic Some Arbitrary
Viterbi v v
Sum-Product v v v
MCMC-Gibbs v v v v v v v
MCMC-MH v v v v v v v

Table 1: Applicability of different inference algorithms for different queries (e.g., top-k, marginal) over different model structures (e.g., linear-chain,

tree-shaped, cyclic), and in handling query constraints.

The structure of the grounded model can be quantified with three
parameters: shape of the model, maximum size of the clique and
the maximum length of the loops. The first parameter determines
the applicability of the models, and is also the most important factor
in the accuracy and the runtime of the inference algorithms over the
model. Although not studied in this paper, the maximum clique size
and the length of the loops play an important role in the runtime of
several known inference algorithms (including, for example, the
junction tree and the loopy belief propagation algorithms) [19].

The correlation strength is the relative strength of the transition
correlation between different label variables over the state corre-
lation between tokens with their corresponding labels. The corre-
lation strength does not influence the accuracy or the runtime of
the Viterbi or the Sum-Product algorithm. However, it is a signif-
icant factor in the accuracy and runtime of the MCMC methods,
especially the Gibbs algorithm. Weaker correlation strengths re-
sult in faster convergence for the Gibbs sampler. At the extreme,
zero transition correlation results in complete label independence,
rendering consecutive Gibbs samples independently, which would
converge very quickly.

The size of the label space of the model is also an important
factor of the runtime of all the inference algorithms. The runtime
of the Viterbi and Sum-Product algorithms is quadratic in the size
of the label space, while the runtime of the Gibbs algorithm is linear
in the label space because each sampling step requires enumerating
all possible labels.

5.3 Rules for Choosing Inference Algorithms

Among the parameters described in the previous section, we focus
on (1) the shape of the model, (2) the correlation strength, and (3)
the label space into consideration, because the rest are less influen-
tial in the four inference algorithms we study in this paper. The data
size is important for optimizing the extraction order in the join over
top-k queries as described in [4]. However, since the complexity of
the inference algorithms we study in this paper are all linear in the
size of the data, it is not an important factor for choosing inference
algorithms.

Based on analysis in the last section on the parameters, the fol-
lowing are the rules to choose an inference algorithm for different
data and model characteristics, quantified by the three parameters,
and the query:

e For cyclic models:
e If cycles are induced by query constraints, choose query-
driven MCMC-MH over Gibbs Sampling;
e Otherwise, choose Gibbs Sampling over MCMC-MH. As
shown in our experiments in Sections 7.3-7.4, the Gibbs

Sampler converges much faster than the random walk MCMC-

MH for computing both top-k extractions and marginal
distribution;
e For acyclic models:

e For models with small label space, choose Viterbi over
MCMC methods for top-k and Sum-Product over MCMC
methods for marginal queries;

e For models with strong correlations, choose Viterbi and
Sum-Product over MCMC methods;

e For models with both large label space and weak correla-
tions, choose Gibbs Sampling over MCMC-MH, Viterbi,
and Sum-Product.

For a typical IE application, the label space is small (e.g., 10),
and the correlation strength is fairly strong. For example, title to-
kens are usually followed by the author tokens in a bibliography
string. Moreover, strong correlation exists with any multi-token en-
tity names (e.g., a person token is likely to be followed by another
person token). Thus, the above rules translate in most cases in
IE to: choose Viterbi and Sum-Product over MCMC methods for
acyclic models for top-k and marginal queries respectively; choose
Gibbs Sampling for cyclic models unless the cycles are induced by
query constraints, in which case choose query-driven MCMC-MH.
In this paper, we use heuristic rules to decide the threshold for a
“small” label space and for a “strong” correlation for a data set.
Developing a cost-based optimizer to make such choices based on
the data and model is one of our future directions.

6 Hybrid Inference

Typically, for a given model and dataset, a single inference algo-
rithm is chosen based on the characteristics of the model. In this
section, we first show that in the context of SQL queries over proba-
bilistic IE results, the proper choice of IE inference algorithm is not
only model-dependent, but also query- and text-dependent. Thus,
to achieve good accuracy and runtime performance, it is impera-
tive for a PDB system to use a hybrid approach to IE even within a
single query, employing different inference algorithms for different
records.

We describe the query processing steps that employ hybrid in-
ference for different documents within a single query. Then we de-
scribe an algorithm, which, given the input of a “SQL+IE” query,
generates a query plan that applies the hybrid inference. Finally, we
show the query plans with hybrid inference generated from three
example “SQL+IE” queries to take advantage of the appropriate IE
inference algorithms for different combinations of query, text and
CRF models.

6.1 Query Processing Steps

In the context of SQL queries over probabilistic IE results, the
proper choice of the IE inference algorithm is not only dependent
on the model, but also dependent on the query and the text.

First of all, the relational sub-query . augments the original
model with additional random variables, cross-edges and factor ta-
bles, making the model structure more complex, as we explained in
Section 4.1. The characteristics of the model may change after ap-
plying the query over the model. For example, a linear-chain CRF
model may become a cyclic CRF model, after the join query in Q1
or the query with aggregate constraint in Q2.

Secondly, when the resulting CRF model is instantiated (i.e.,
grounded) over a document, it could result in a grounded CRF
model with drastically different model characteristics. For exam-
ple, the CRF model, resulting from a join query over a linear-chain
CRF model, when instantiated over different documents, can re-
sult in either a cyclic or a tree-shaped model, as we have shown in
Figure 5(a) and (b).



HYBRID-INFERENCE-PLAN-GENERATOR (Q)

1 apply Qre over the base CRF models — CRF*

2 apply deterministic selections in Q over base TOKENTBLs — {T;}
3 apply deterministic joins in Q over {T;} — T

4 apply model instantiation over T using CRF* — groundCRFs

5 apply split operation to groundCRFs — linearCRFs, treeCRFs, cyclicCRF's
6 if Qi s is Marginal then

7 apply Sum-Product to (linearCRFs + treeCRFs) — res2

8 apply Gibbs to (cyclicCRFs) — res3

9 elseif Q;y, s is Top-k then

10 apply Viterbi to (linearCRFs) — resl

11 if Qre contains aggregate constraint but no join then

12 apply Viterbi to (cyclicCRFs + treeCRFs) — res

13 apply aggregate constraint in Q over res — resl

14 apply query-driven MCMC-MH to (res — resl). T — res3
15 else

16 apply Gibbs to (cyclicCRFs + treeCRFs) — res3

17 endif endif

18 if Qip ¢ is Top-k then

19 apply union of resl and res3

20 elseif Q;y, ¢ is Marginal then
21 apply union of res2 and res3
22 endif

Figure 7: Pseudo-code for the hybrid inference query plan generation
algorithm.

The applicability, accuracy and runtime of different inference al-
gorithms vary significantly over models with different characteris-
tics, which can result from different data for the same query and
model. As a result, to achieve good accuracy and runtime, we ap-
ply different inference algorithms (i.e., hybrid inference) for differ-
ent documents within a single query. The choice of the inference
algorithm over a document is based on the characteristics of its
grounded model, and rules for choosing inference algorithms we
described in Section 5.3.

The main steps in query processing with hybrid inference are as
follows:

1. Apply Query over Model: Apply the relational part of the
query Qr. over the underlying CRF model;

2. Instantiate Model over Data: Instantiate the resulting model
from the previous step over the text, and compute the impor-
tant characteristics of the grounded models;

3. Partition Data: Partition the data according to the proper-
ties of grounded models from the previous step. In this pa-
per, we only partition the data according to the shape of the
grounded model. More complicated partitioning techniques,
such as one based on the size of the maximum clique can be
considered for future work;

4. Choose Inference: Choose the inference algorithms to ap-
ply according to the rules in Section 5.3 over the different
data partitions based on the characteristics of the grounded
models;

5. Execute Inference: Execute the chosen inference algorithm
over each data partition, and return the union of the results
from all partitions.

6.2 Query Plan Generation Algorithm

We envision that the query parser takes in a “SQL+IE” query and
outputs, along with others non-hybrid plans, a query plan which
applies hybrid inference over different documents.

The algorithm in Figure 7 generates a hybrid inference query
plan for an input “SQL+IE” query @), consisting of the relation part
Qre, and the subsequent inference operator (Qins. In Line 1, the
relational operators in Q.. are applied to the CRF models under-
lying the base TOKENTBL tables, resulting in a new CRF model

CRF™. In Lines 2 to 3, selection and join conditions on the deter-
ministic attributes (e.g., docID, pos, token) are applied to the base
TOKENTBL tables, resulting in a set of tuples 7', each of which rep-
resents a document or a document pair. In Line 4, the model instan-
tiation is applied over T" using C RF'™ to generate a set of “ground”
models groundCRFs. In Line 5, a split operation is performed to
partition the groundCRFs according to their model structures into
linearCRFs, treeCRFs and cyclicCRFs.

Lines 6 to 19 capture the rules for choosing inference algorithms
we described in Section 5.3. Finally, a union is applied over the
result sets from different inference algorithms for the same query.

Lines 11 to 14 deals with a special set of queries, which compute
the top-k results over a simple query with aggregate conditions that
induce cycles over the base linear-chain CRFs. The intuition is
that it is always beneficial to apply the Viterbi algorithm over the
base linear-chain CRFs as a fast filtering step before applying the
MCMC methods. In Line 12, it first computes the top-k extrac-
tions res without the aggregate constraint using Viterbi. In Line
13, it applies the constraint to the top-k extractions in res, which
results in a set of top-k extractions that satisfy the constraints in
resl. In Line 14, the query-driven MCMC-MH is applied to the
documents in 7" with extractions that do not satisfy the constraint:
(res-res1).T. An example of this special case is described in
Section 6.3.3.

Complexity: The complexity of generating the hybrid plan de-
pends on the complexity of the operation on Line 5 in Figure 7,
where the groundCRFs are split into subsets of 1inearCRFs,
treeCRFs and cyclicCRFs. The split is performed by traversing
the ground CRFs to determine their structural properties, which is
linear to the size of the ground CRF O(NV), where N is the number
of random variables. The complexity of choosing the appropriate
inference (lines 6 to 21) is O(1).

On the other hand, the complexity of Viterbi, Sum-Product al-
gorithms over linearCRFs and treeCRFs is O(NN) with a much
larger constant, because of the complex computation (i.e., sum,
product) over |Y| x |Y| matrices, where |Y| is the number of
possible labels. The complexity of exact inference algorithm over
cyclicCRFs is NP-hard. Thus the cost of generating the hybrid
plan is negligible from the cost of the inference algorithms.

6.3 Example Query Plans

In this section, we describe three example queries and show the
query plans with hybrid inference generated from the algorithm in
Figure 7, which take advantage of the appropriate inference algo-
rithms for different combinations of query, text and CRF models.

6.3.1 Skip-Chain CRF

In this query, we want to compute the marginal distribution or
the top-k extraction over an underlying skip-chain CRF model as
shown in Figure 4. The query is simply:

Q4: [Skip-Chain Model]
SELECT [Top-k(T1.docID) | Marginal(Tl.pos|exist)]
FROM TokenTbl T1

As described in [12], the MCMC methods are normally used to
perform inference over the skip-chain CRF model for all the doc-
uments, like the query plan in Figure 8(b). The Viterbi algorithm
fails to apply because the skip-chain model contains skip-edges,
which make the CRF model cyclic.

However, the existence of such skip-edges in the grounded mod-
els, instantiated from the documents, is dependant on the text! There
exist documents, like the one shown in Figure 4, in which one
string appears multiple times. Those documents result in cyclic
CRF models. But, there also exist documents, in which only unique
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Figure 8: The query plan for an inference, either top-k or marginal,

over a skip-chain CRF model.

tokens are used except for “stop-words”, such as “for”, “a”. Those
documents result in linear-chain CRF models.

The query plan generated with hybrid inference is shown in Fig-
ure 8(a). After the model instantiation, the ground CRF model
is inspected: if no skip-edge exists (i.e., no duplicate strings ex-
ist in a document), then the Viterbi or the Sum-Product algorithm
is applied; otherwise, the Gibbs algorithm is applied to the cyclic
ground CRFs. Compared to the non-hybrid query plan, the query
plan with hybrid inference is more efficient by applying more ef-
ficient inference algorithms (e.g., Viterbi, Sum-Product) over the
subset of the documents, where the skip-chain CRF model does not
induce cyclic graphs. The speedup depends on the performance of
Viterbi/Sum-Product compared to Gibbs Sampling, and on the per-
centage of such documents that instantiate a skip-chain CRF model
into a grounded linear-chain CRF models.

6.3.2 Join over Linear-chain CRF

In this example, we use the join query Q1 described in Section 4.1,
which computes the marginal probability of the existence of a join
result. The join query is performed between each document pair on
having tokens with the same strings labeled as ’person’.

Such a join query over the underlying linear-chain CRF models
induces cross-edges and cycles in the resulting CRF model. A typ-
ical non-hybrid query plan, shown in Figure 9 with black edges,
perform MCMC inference over all the documents.

However, as we see in Figure 5(a) and (b), depending on the text,
the joint CRF model can be instantiated into either a cyclic graph or
a tree-shaped graph. The red edge in Figure 9 shows the query plan
with hybrid inference for the join query Q1. As we can see, instead
of performing MCMC methods unilaterally across all “joinable”
document pairs (i.e., contain at least 1 pair of common tokens), the
sum-product algorithm is used over the document pairs that con-
tain only 1 pair of common tokens. Compared to the non-hybrid
query plan, the hybrid inference reduces the runtime by applying
the more efficient inference (i.e., Sum-Product) when possible. The
speedup depends on the performance of Sum-Product compared to
the MCMC methods, and the percentage of the “joinable” docu-
ment pairs that only share one pair of common tokens that are not
“stop-words”.

6.3.3 Aggregate Constraints

In this example, we use Q2, the query with an aggregate constraint,
described in Section 4.1. As shown in Figure 5(c), the aggregate
constraints can induce a big clique including all the label variables
in each document. In other words, regardless of the text, based on
the model and the query, each document is instantiated into a cyclic
graph with high tree-width.

Again, typically, for such a high tree-width cyclic model, MCMC-

Union
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Sum-product Gibbs/MCMC-MH

only 1 cross-edge (tree)  more thén 2 cross-edges (cyclic)

model instantiation CRF1-2

I

Join(token1=token2) Join(token1=token2 & labell=label2)

TokenTbl1 TokenTbI2 CRF1 CRF2
Figure 9: The query plan for the probabilistic join query followed by
marginal inference.
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Figure 10: The query plan for the aggregate selection query followed

by a top-k inference.

MH algorithms are used over all the documents to compute the top-
k extractions that satisfy the constraint. Such a non-hybrid query
plan is shown in Figure 10(b).

However, this query falls into the special case described in the
query plan generation algorithm in Section 6.2 for hybrid inference.
The query is to return the top-k extractions over the cyclic graph
induced by an aggregate constraint over a linear-chain CRF model.
Thus, the resulting query plan is shown in Figure 10(a).

In the query plan with hybrid inference, the Viterbi algorithm
runs first to compute the top-k extraction without the constraint.
Then, the results are run through the aggregate: those that satisfy
the constraint are returned as part of the results, and those that do
not satisfy the constraint are fed into the query-driven MCMC-MH
algorithm.

7 Evaluation

So far, we have described the implementation of the MCMC al-
gorithms, and the query plans for the hybrid inference algorithms.
We now present the results of a set of experiments aimed to (1)
evaluate the efficiency of the SQL implementation of the MCMC
methods and the effectiveness of the query-driven sampling tech-
niques; (2) compare the accuracy and runtime of the four inference
algorithms: Viterbi, Sum-Product, Gibbs and MCMC-MH, for the
two IE tasks—top-k and marginal; and (3) analyze three real-life
text datasets to quantify the potential speedup of a query plan with
hybrid inference compared to one with non-hybrid inference.
Setup and Dataset: We implemented the four inference algorithms:
Viterbi, Sum-Product, Gibbs and MCMC-MH in PostgreSQL 8.4.1.
We conducted the experiments reported here on a 2.4 GHz Intel
Pentium 4 Linux system with 1GB RAM.

For evaluating the efficiency of the in-database implementation
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Figure 11: Runtime comparison of the SQL and Java/Scala imple-
mentations of MCMC-MH and Gibbss algorithms over DBLP.

of the MCMC methods, and for comparing the accuracy and run-
time of the inference algorithms, we use the DBLP dataset [23] and
a CRF model with 10 labels and features similar to those in [18].
The DBLP database contains more than 700,000 papers with at-
tributes, such as conference, year, etc. We generate bibliography
strings from DBLP by concatenating all the attribute values of each
paper record. We also have similar results for the same experiments
over NYTimes dataset, which we include in our technical report.
For quantifying the speedup of query plans with hybrid infer-
ence, we examine the New York Times (NYTimes) dataset, and
the Twitter dataset in addition to the DBLP dataset. The NYTimes
dataset contains ten-million tokens from 1, 788 New York Times
articles from the year 2004. The Twitter dataset contains around
200, 000 tokens from over 40, 000 tweets obtained in January 2010.
We label both corpora with 9 labels, including person, location, etc.

7.1 MCMC SQL Implementation

In this experiment, we compare the runtime of the in-database im-
plementation of the MCMC algorithms, including Gibbs Sampling
and MCMC-MH, with the runtime of the Scala/Java (with Scala
2.7.7 and Java 1.5) implementation of MCMC-MH described in [12]
over linear-chain CRF models. The runtime of Scala/Java imple-
mentation is measured on a different machine with better configu-
rations (2.66GHz CPU Mac OSX 10.6.4 with 8G RAM).

As we can see in Figure 11, the runtime of the MCMC algorithms
grow linearly with the number of samples for both the SQL and the
Java/Scala implementations. While the Scala/Java implementation
of MCMC-MH can generate 1 million samples in around 51 sec-
onds, it takes about 78 seconds for the SQL implementation of the
MCMC-MH, and about 89 seconds for that of the Gibbs Sampling.
This experiment shows that the in-database implementations of the
MCMC sampling algorithms achieve comparable (within a factor
of 1.5) runtime compared to the Java/Scala implementation.

7.2 Query-Driven MCMC-MH

In this experiment, we evaluate the effectiveness of the query-driven
MCMC-MH algorithm described in Section 4.3 with the vanilla
MCMC-MH in generating samples that satisfy the query constraint.
The query we use is Q2 described in Section 4.1, which computes
the top-1 extractions that satisfy the aggregate constraint that all
title tokens are in front of the author tokens.

We run the query-driven MCMC-MH and the vanilla MCMC-
MH algorithm over a randomly picked 10 documents from the DBLP
dataset. Figure 12 shows the number of “qualified” samples that are
generated by each algorithm in 1 second. As we can see, the query-
driven MCMC-MH generates more “qualified” samples, roughly
1200 for all the documents, and for half of the documents the
query-driven MCMC-MH generates more than 10 times more qual-
ified samples than vanilla MCMC-MH.

MCMC-MH vs. Query-driven MCMC-MH
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Figure 12: The number of qualified samples generated by the query-
driven MCMC-MH and the vanilla MCMC-MH algorithm in 1 second
for different documents in DBLP.
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Figure 13: Runtime-Accuracy graph comparing Gibbs, MCMC-MH
and Viterbi over linear-chain CRF for top-1 inference on DBLP.

7.3 MCMC vs. Viterbi on Top-£ Inference

This experiment compares the runtime and the accuracy of the Gibbs,
the MCMC-MH and the Viterbi algorithms in computing top-1
inference over linear-chain CRF models. The inference is per-
formed over 45, 000 tokens in 1000 bibliography strings from the
DBLP dataset. We measure the “computation error” as the number
of labels different from the exact top-1 labelings according to the
model '. The Viterbi algorithm only takes 6.1 seconds to complete
the exact inference over these documents, achieving zero computa-
tion error.

For the MCMC algorithms, we measure the computation error
and runtime for every 10k more samples, starting from 10k to 1
million samples over all documents. As we can see in Figure 13,
the computation error of the Gibbs algorithm drops to 22% from
45,000 to 10,000 when 500k samples are generated. This takes
around 75 seconds, more than 12 times longer than the runtime
of the Viterbi algorithm. The MCMC-MH converges much slower
than the Gibbs Sampling. As more samples are generated, the top-
1 extractions generated from the MCMC algorithms get closer and
closer to the exact top-1, however very slowly. Thus, Viterbi beats
the MCMC methods by far in computing top-1 extractions with
linear-chain CRF models: more than 10 times faster with more than
20% fewer computation errors.

7.4 MCMC vs. Sum-Product on Marginal Inference

This experiment compares the runtime and the accuracy of the Gibbs,
MCMC-MH and the Sum-Product algorithms over tree-shaped graph-
ical models induced by a join query similar to Q1, described in Sec-
tion 4.1. The query computes the marginal probability of the exis-
tence of a join result for each document pair in DBLP, joining on
the same "publisher’. The query is performed over a set of 10, 000
pairs of documents from DBLP, where the two documents in each
pair have exactly one token in common.

"The top-1 extractions with zero computation error may still contain mis-
takes, which are caused by inaccurate models.
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Figure 14: Runtime-Accuracy graph comparing Gibbs, MCMC-MH
and sum-product over tree-shaped models for marginal inference on
DBLP.

Data Skip-chain | Probabilistic | Aggregate
Corpora CRF Join Constraint
NYTimes x5.0 x4.5 x10.0
Twitter x5.0 %x2.6 N/A
DBLP x1.0 x1.0 N/A

Table 2: Speed-ups achieved by hybrid inference for different queries.

The sum-product algorithm over these 10, 000 tree-shaped graph-
ical models takes about 60 seconds. As an exact algorithm, the
sum-product algorithm achieves zero computation error. We mea-
sure the “computation error” as the difference between the marginal
probabilities of join computed from the MCMC-MH algorithms
and the sum-product algorithm, averaging over all document pairs.

For the MCMC algorithms, we measure the computation error
and runtime for every 200k more samples, starting from 200k to
2 million samples over all document pairs. As we can see in Fig-
ure 14, the probability difference between Gibbs and Sum-Product
converges to zero quickly: at 400 second, the probability difference
is dropped to 0.01. The MCMC-MH on the other hand, converges
much slower than the Gibbs.

This experiment shows that MCMC algorithms performs rela-
tively better in computing marginal distributions than in comput-
ing top-1 extractions. However, Sum-Product algorithm still out-
performs MCMC algorithms in computing marginal probabilities
over tree-shaped models: more than 6 times faster with about 1%
less computation error.

7.5 Exploring Model Parameters

In this experiment, we explore how different correlation strengths,
one of the parameters we discussed in Section 5.2, affect the run-
time and the accuracy of the inference algorithms. As we explained
earlier, the correlation strength does not affect the accuracy or the
runtime of the Viterbi algorithm. On the other hand, weaker corre-
lation between different random variables in the CRF model leads
to faster convergence for the MCMC algorithms. The setup of this
experiment is the same as in Section 7.3.

In Figure 15, we show the runtime-accuracy graph of the Viterbi
and the Gibbs algorithm to compute the top-1 extractions over mod-
els with different correlation strengths. We synthetically generated
models with correlation strengths of 1, 0.5, 0.2 and 0.001 by divid-
ing the original scores in the transition factors by 1, 2, 5 and 1000
respectively. As we can see, the weaker correlation strengths lead
to faster convergence for the Gibbs algorithm. When correlation
strength is 0.001 the computation error reduces to zero in less than
twice that of the Viterbi runtime.

The correlation strength of the CRF model depends on the dataset
on which the CRF model is learned. The model we learned over
NYTimes and DBLP dataset both contains strong correlation strength.

Correlation Strength: Gibbs vs. Viterbi
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Figure 15: Runtime-Accuracy graph comparing Gibbs and Viterbi
over models with different correlation strengths on DBLP.

7.6 Hybrid Inference for Skip-chain CRF

In this and the next two sections, we describe the results, in terms
of runtime speed-ups, comparing the query plan generated by hy-
brid inference with a non-hybrid solution. Table 2 summarizes the
results of hybrid inference for different queries over different mod-
els.

The query we use in this experiment is Q4 over the skip-chain
CRF model, described in Section 6.3.1. Given that the Viterbi is
more than 10 times more efficient than Gibbs with zero computa-
tion error, as we showed in Section 7.3, the speed-up enabled by
the hybrid inference for Q4 is determined by the percentage of the
documents that do not contain duplicate non-“stop-word” tokens.

For NYTimes dataset, we use the sentence breaking function in
NLTK toolkit [24], and the full-text stop-word list from MySQL [25].
Over all sentences, only about 10.3% contain duplicate non-*“stop-
word” tokens. Thus, the optimizer will use the Viterbi algorithm
for 89.7% of the sentences, while using the Gibbs algorithm for
the rest. This hybrid inference plan can achieve a 5-fold speedup
compared to the non-hybrid solution, where the Gibbs algorithm is
used over all the documents.

We did the same analysis on the Twitter dataset. The number
sentences that contains non-“stop-word” duplicate tokens is 10.0%,
which leads to a similar 5-fold speedup. On the other hand, for
DBLP dataset, the number of documents that contains non-“stop-
word” duplicates is as high as 96.9%, leading to a 3% speedup.

7.7 Hybrid Inference for Probabilistic Join

The query used in this experiment is the join query Q1, described
in Section 6.3.2. Given that the Sum-Product is more than 6 times
more efficient than Gibbs with zero computation error, as we showed
in Section 7.4, the speed-up enabled by the hybrid inference for Q1
is determined by the percentage of the “joinable” document pairs
that share only one pair of common non-“stop-word” tokens.

For the NYTimes dataset, about 6.0% “joinable” sentence pairs
share more than one pair of non-‘‘stop-word” common tokens. Thus,
the Sum-Product algorithm can be applied to the other 93.6% of
the sentences, achieving a 4.5 times speedup compared to the non-
hybrid approach of running Gibbs over the joint CRF model of all
the document pairs.

For the Twitter datset, around 25.6% “joinable” sentence pairs
share more than one pair of tokens. This is much lower than NY-
Times dataset mainly because tweets contain a lot of common short-
hands. Thus the speedup is around 2.6 times. For DBLP dataset,
on the other hand, the speedup is little due to the high percentage
of document pairs contain more than one pair of common words.

7.8 Hybrid Inference for Aggregate Constraint

The query used in this experiment is Q2 with an aggregate con-
straint described in Section 6.3.3. We performed this query over



the DBLP dataset. Out of all the top-1 extractions of the 10, 000
bibliography strings, only 25 of them do not satisfy the aggregate
constraint that all title tokens are in front of all author tokens.
Thus, although the aggregate constraint in the query induce a big
clique in the CRF model, which calls for MCMC algorithms, the
MCMC is not needed for most of the cases. To perform Q2 over
DBLP, MCMC only needs to be performed over 25 out of 10, 000
documents, which leads to a 10-fold speedup.

Summary: The results in Section 7.1 and Section 7.2 show that
MCMC algorithms can be implemented in database, achieving com-
parable runtimes as the Scala/Java implementation. The query-
driven sampling techniques can effectively generate more samples
that satisfy query constraints for conditional queries. Section 7.3
and Section 7.4 show that the Viterbi and Sum-Product algorithms
are by far more efficient and more accurate than the MCMC al-
gorithms over linear-chain and tree-shaped models in IE. Lastly,
based on the text analysis over NYTimes, Twitter and DBLP datasets,
we conclude that the query plans with hybrid inference can achieve
up to 10-fold speed-up compared to the non-hybrid solutions.

8 Conclusion

In this work, we show the in-database implementations of two MCMC-

based general inference algorithms. The in-database implementa-
tions enable efficient probabilistic query processing with a close
integration of the inference and relational queries. It also demon-
strates the feasibility and potential of using a query optimizer to
support a declarative query language for different inference opera-
tions over probabilistic graphical models. Results from three real-
life datasets demonstrate that hybrid inference can achieve up to
10-fold speed-up compared to the non-hybrid solutions. As future
work, we intend to explore the development of a cost-based op-
timizer that can balance the efficiency and accuracy in answering
probabilistic queries. In addition, we intend to support other text
analysis tasks, such as entity resolution, and learning algorithms.
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9 Appendix

Having implemented a number of inference algorithms in the database,

including Viterbi dynamic programming for linear-chain CRF, sum-
product belief propagation, and the MCMC methods described above,
we have developed a set of design guidelines for implementing sta-
tistical methods in the database:

e Avoid using iterative programming patterns in PL/pgSQL and
other database extension languages. This is easily over-
looked, since many machine learning inference techniques
are described as iterative methods. Database architectures
are optimized for running a single query over lots of data,
rather than iteratively running a little query over small amounts
of data. The passing of “iterative state” is achieved in a
single query expression via recursive queries in Viterbi and
Sum-Product, and window aggregate functions in MCMC-
MH and Gibbs.

e Use efficient representations for factor tables. Tables and
rows are heavy-weight representations for cells in a factor
table. Array data types (which are now standard in many
relational database systems) provide better memory locality,
faster look-up and more efficient operations.

e Drive the data-flow via a few SQL queries, and use user-
defined functions (and aggregates) to do inner-loop arith-

metic. This design style enables the database optimizer to
choose an efficient data-flow, while preserving programmer
control over fine-grained efficiency issues.

e Keep running state in memory, and update using user-defined
functions and aggregates. This is typically far more efficient
than storing algorithm state in the database and updating us-
ing SQL.
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