APPLICATION OF ABSTRACT DATA TYPES AND ABSTRACT
INDICES TO CAD DATA BASES

Michael Stonebraker
Brad Rubenstein
Antonin Guttman

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE
UNIVERSITY OF CALIFNRNIA
BERKELEY, CA.

ABSTRACT

This paper explores the use of one form of
abstract data types in CAD data bases. Basi-
cally, new data types for colurmns of a relation,
such as boxes, wires and polygons, become pos-
sible. Also explored 1s the possibility of secon-
dary indices for new data types that can sup-
port existing and user-defined operators. The
performance and query complexity considera-
tions of these features are examined

1. INTRODUCTION

It has been pointed out [HASKB2, KATZ82] that Com-
puter Aided Design (CAD) applications are not particu-
larly well suited to current relational data base manage-
ment systems. Extensions or modifications appear desir-
able to deal with the following issues:

a) Support for new data types such as polygons, recta-
gons, text strings, ete

b) Support for efficient spatial searching.
c) Support for complex integrity constraints.

d) Support for design hierarchies and multiple represen-
tations.

The first issue arises because CAD applications are
not well served by the integers, floating point numbers
and character strings prevalent in business data process-
ing applications. Moreover, spatial searching is needed
for design operations that involve objects which fall in a
specific area, such as the display of a portion of a VLSI
designh on a CRT screen. Spatial searching is not
effectively supported by existing general purpose DBMSs,
The third issue arises because CAD designers often wish
complex integrity constraints, such as integrated circuit
layout rules, to be enforced for their data.

The last issue arises because many design environ-
ments have hierarchical levels of detail. For example, a
VLSI integrated circuit might have several intermediate
levels of detail between one containing the whole chip as
a single black box and the one containing detailed spatial
masks for circuit cells at the lowest level. These inter-
mediate levels suppress details irrelevant to that partic-
ular level, and a designer can use whatever level of detail
fits his particular needs. In addition, more than one view
of the design may exist simultaneously, giving multiple
overlapping representations for data base objects. An
example would be a bit-slice design for a CPU. For pur-
poses of describing its physical construction, the design
is made up of several parallel bit-slices, but a functional

CH1886-1/83/0000/0107%1.00 © 1983 IEEE

107

block diagram may consist of separate boxes for the
ALU, register file, etc.

In [KATZ82] several approaches are suggested for
various of the above issues. In this paper we report on
the success observed using one approach, abstract data
types, as a solution to issue a} and issue b) above.

The remainder of this paper is organized as follows.
In Section II we briefly review our use of abstract data
types. A more complete discussion appears in [STON82].
Then in Section 1l we describe extensions to secondary
index facilities to support abstract data types. Extended
secondary indices can provide efficient spatial searching
as well as other kinds of indexing. Next, in Section IV we
apply abstract data types to a data base of VLSI design
information used in [GUTT82]. Lastly, in Section V we
report on the performance implications of abstract data
types by redoing the performance comparison between a
relational data base system and a special purpose CAD
system reported in [GUTTBR2] and performing other
experiments.

HO. ABSTRACT DATA TYPES

Abstract data types (ADTs) [LISK74, GUTT77] have
been extensively investigated in a programming language
context. Basically, an ADT is an encapsulation of a data
structure (so that its implementation details are not visi-
ble to an outside client procedure) along with a collec-
tion of related operations on this encapsulated structure.
The canonical example of an ADT is a stack with related
operations' new, push, pop and empty.

ADTs have been considered extensively in the con-
text of sernantic data modeling and as a central theme in
data base systern implementation [LOCK79]. Moreover,
the use of ADTs in a relational data base context has
been discussed in [ROWE79, SCHM78, WASS79]. In these
proposals a relation is an abstract data type whose
implementation details are hidden from application level
software. Then, allowable operations are defined by pro-
cedures written in a programming language that sup-
ports both data base access and ADTs. One use of this
kind of abstract data type is suggested in [ROWE79] and
involves an EMPLOYEE abstract data type with related
operations hire-employee, fire-employee and change-
salary. This use of ADTs can also limit access to a rela-
tion in prespecified ways, thereby guaranteeing a higher
level of data security and data integrity. Also, a view
[STON?5] can be defined as an ADT. Consequently, the
algorithm that transforms updates on views into updates
on relations actually stored in the data base can be
encapsulated in the ADT, thereby providing a high degree
of data independence.

This section presents a different use of ADTs, in par-

This Research was supported by the Advanced Research Projects
Agency under Contract FNOOUS36-C-0235.

ticular © :1dividual c-lumns of a relation. The goal is to
exte, 'e ~2mantic pcwer of a relational data base sys-
tern by pL ovealisg definition of new data types and
related operators on these data types by means of
defined procedures obeying a specialized protocol. This
use of ADTs is a generalization of data base experts
[STONB0]. We explain our use of ADTs with an extended
example concerning geometric objects.

In computer aided design of integrated circuits,
objects are often made up of small rectangular pieces
called ' boxes". For a VLSI data base one would like to be
able to define a tolumn of a relation of type "box". For
example, one might define a boxes relation as follows:

create boxes (owner = i4,
layer = c15,
box-desc = box-ADT)

Here,-the boxes relation has three fields: the identifier of
the circuit of which each box is a part, the processing
layer for the box ({polysilicon, diffusion, etc.) and a
description of the box’s geometry. All flelds are
represented by standard built-in types except box-desc
whichis a data type added by an ADT implementor.

Tuples can be added to this relation using QUEL
[STON?6] as follows:

append to boxes (owner = 99,
layer = "polysilicon”,
box-desc = "0,0,2,3")

Clearly, all fields can be correctly converted to an inter-
nal representation and stored in a data base system with
the exception of the string "0,0,2,3", which represents
the box bounded by x=0, y=0, x=2, y=3. In order to be
mterpreted as the description of a box, special recogni-
tion code 1s required. Basically an input procedure must
be available to the DBMS to perform the conversign of
the character string "0,0,2,3" to an object with data type
box-ADT. Such a routine is analogous to the procedure
ascii-to-float which converts a character string to a float-
ing point number. A DBMS has a collection of built-in
conversion routines for standard types, and our proposal
entails allowing additional conversion routines to be sup-
plied by an ADT implementor.

One would also like to use standard DBMS operators
on the box-ADT domain, e.g.

range of b is boxes
replace b (box-desc = b.box-desc *"'0,0,4,1")
where b.owner = 99

The intended effect of this command is to replace the
box by its intersection with another box. The intended
semantics of * are those of intersection; consequently,
the data manager must be instructed how to interpret
the multiplication of two objects of type box-ADT. In this
case "0,0,4,1" will be converted to an object of type box-
ADT to match the type of b.box-desc, and a procedure
must be available to perform the appropriate multiplica-
tion.

Next one would like to define new functions on the
box-ADT column. Numerical columns have sin, cos, log,
ete. defined as built-in functions. Each of these accepts
an integer or floating point number as input and returns
a floating point number. Similarly, one might want to
define a function that calculates the area of a box and
use it in data manipulation commands, e.g.

retrieve (b.owner)
where area(b.box-desc) > 100

One must define for the data base manager the function
"area” which accepts a box-ADT as input and returns an
integer.

108

In addition, one might want to define new com-
parison operations. For example, one might wish to
define the concept “overlaps” for boxes, and to have a
corresponding operator, "||, defined for this purpose.
The overlap operator could then be used to ask if there
were any box overlapping the unit square based at the
origin as follows:

range of b is boxes
retrieve (b.box-desc)
where b.box-desc || “0,0,1,1"

Not surprisingly, a procedure defined by the ADT imple-
mentor for the || operator is required.

Lastly, one would like to be able to define aggregate
functions for the new type. For example, one would like
to be able to find the owner of the box with the largest
vertical dimension on the polysilicon layer:

retrieve (b.owner) where b.box-desc =
tallest(b.box-desc where b.layer = "polysilicon”)

Again, a routine is required to define the "tallest” func-
tion for the new data type.

As a result an ADT is the following abstraction.

a) a registration procedure whereby a DBMS is informed
of the existence of the new type and given the length of
its internal representation.

b) a collection of routines which define the semantics of
operators for this type and perform conversions to other
types. These routines must obey a prespecified protocoi
for accepting arguments and returning results. Once
defined by the ADT implementor, the new type and opera-
tors become available to other users of the DBMS.

¢) small changes to the parser and query execution
engine to correctly parse commands with new operators
and call the routines defined by the ADT implementor
when appropriate during execution.

This abstraction has been implemented in the
INGRES relational data base system and is about 2500
lines of code Details on implementation issues concern-
ing parser tables, overioading of operators, security and
dynamic loading of routines are addressed in [FOGG82,
ONGB2]. It appears to execute with modest performance
degradation [FOGGB2]. It should be noted that the imple-
mentation also allows definition of new operators and
functions for ordinary data types.

1. EXTENDED SECONDARY INDICES

The preceding section has indicated a mechanism
for adding new data types and new operators to a rela-
tional data base system. This section explores the possi-
bility of supporting secondary indices in this more gen-
eral environment.

Traditionally, secondary indices provide a fast
access path to required data items when a query
specifies an exact match with a user specified value or a
comparison operator applied with a specified value. For
example, if secondary indices exist for the name and
salary fields of an employee relation, then the queries

range of e is employee
retrieve (e.salary) where e.name = "Jones"
retrieve (e.name) where e.salary > 1000

can be answered by using indices.

Since new operators can be defined for normal data
types and for new ADT data types, one would want the fol-
lowing capabilities.

JOTPr .

ot 1A o SRR A o it R e b i by oot i AL T i o ereiS e 8

o

1) Indices on ADT columns with existing operators.

For example, consider the situation where salaries of
employees are stored as packed decimal numbers. Since
this is not one of the built-in data types in many systems,
an ADT is required. One would want to index salary so
that the above query could be answered effectively In
this case extending an indexed sequential access method
to support the new data type will be adequate.

2) Indices on normal columns using new operators.
For example, consider the query:

range of e is employee
retrieve (e.name) where e.name ! 7

which requests the names of employees whose names are
exactly 7 characters long. The new operator ! counts
the number of non-blank characters in a name and com-
pares the result to an integer operand. One would want a
secondary index for the !! operator so that this query
could be efficiently answered. Clearly, an index which
provided a bin for each possible length would be
appropriate.

3) Indices on ADT columns with new operators.
Consider the query from Section II to find all the boxes
that intersect the unit sgquare at the origin

range of b is boxes
retrieve (b box-desc)
where b.box-desc || "0,0,1,1"

We need an index that will allow retrieval of only the
boxes that qualify, or will at least restrict the search to a
small subset of the boxes relation.

The objective of this section is to propose a scheme
which supports all three capabilities above. It has always
been our position that an appropriate collection of
access methods should be provided by any DBMS and
that it should be easy to add new ones [STON76]. Hence,
our goal is to allow any access method to operate in the
more general context of ADTs. Hashing and indexed-
sequential (ISAM) are the access methods currently sup-
ported by INGRES, and we focus the discussion on
extending these. As a running example, we use the boxes
relation defined above,

An index can be created using the INGRES index
command:

index on boxes is b-index {box-desc)

This will create a relation of the following form which will
be used as a secondary index:

b-index (box-dese, pointer-to-tuple)
A row exists in b-index for each row in the boxes relation
and contains the box-desc field along with a pointer to
the given tuple in boxes. The index b-index is initia'v

stored as a heap and must be modified to hash or ISAM to
be useful. For example:

modify b-index to hash on box-desc using my-function

The only change to the current modify command is the
inclusion of a 'using” clause. INGRES normally builds
hashed secondary indices by allocating a number of
buckets, then reading the tuples one by one, calling its
internal hash function to obtain a bucket number and
storing the tuple in the correct bucket. In this context
INGRES calls my-function instead of its built-in hashing
function to obtain bucket numbers. My-function must be
a valid function registered through the ADT registration
facility which expects a box-ADT as an argument and
returns an integer. No other modifications ‘are required
to the code if my-function returns a single integer.

109

However, suppose we have a grid in the x-y plane as
shown in Figure 1, and we want my-function, when passed
a box, to return the numbers of all the grid cells that it
intersects.

- w_““ "y M

'
i

11 12‘1:3;14;15

|

6 7T '8]

]

|
1 2&3 4 5

10

A grid structure for my-function
Figure 1

Grid cell zero is reserved for boxes which extend outside
the boundary of the above structure. In this situation
my-function returns a list of buckets instead of a single
bucket number and INGRES must insert a row in the
appropriate bucket in b-index for each value in the list.
The modify command for this structure is

modify b-index to hash on box-desc
using my-function {param-lst)

Here param-list is a character string containing neces-
sary information such as the number and size of the grid
squares and the location of the grid in the plane. These
values could be hard-wired into my-function, but it is
preferable that they be setable for each index.

We now illustrate how to use an ISAM structure with
new columns and operators. Again, we could run the
following modify command:

modify b-index to isam (box-desc) using <+

Normally, an ISAM structure is built by sorting the values
for box-desc using the built-in operator < to define the
sort order. In this case the index can be bullt in an
analogous way by substituting the operator <+ to define
some ordering on bogxes, for example by comparing their
areas. <+ would Be expected to compare two box
descriptions and return true or false if one was “less
than” the other. The ISAM structure would then support
the ordering determined by <+.

Once & hashed or ISAM secondary index is created
for the boxes relation, one must specify to INGRES how
the index can be used in processing queries. INGRES has
a built-in function, FIND, for hashed structures which will
return the hash buckets which must be inspected for
tuples which satisfy a particular query. In the current
implementation a hash bucket is identical to a UNIX
page. so FIND returns a collection of pages. An analogous
FIND function returns a collection of pages for an ISAM
structure. These functions are called by specifying the
value used in a qualification and the operator involved,
For example, for the qualification

where e.salary > 1000

FIND is called with parameters > and 1000. In our
extended environment, a FIND function must be provided
for each possible operator for which the index can be
used. We propose a new INGRES command for the pur-

pose, i.e.
use b-index with find-function
for (|| box-ADT, box-ADT ||)

This command specifies the circumstances under which
the the routine, find-function, should be called to provide
the required collection of ppages to search. The above
examnple indicates that this function is appropriate when
the intersection operator || is encountered connecting a
variable and a value of type box-ADT. Moreover, the value
can be on either side of the || operator. For example,
suppose one submitted the query:

range of b 1s boxes
retrieve (b.all)
where b.box-desc |j 70,0,1,1"

The string on the right is converted automatically to an
object of type box-ADT because | is defined to take box-
ADT arguments. After the conversion, the qualification is
of the form

where b.box-desc || box-ADT

and therefore b-index can be used to process the query.
The ADT function find-function is called to return a list of
pages which must be examined. Then, INGRES simply
iterates over the list examining each index entry, follow-
ing the appropriate pointer, obtaining a tuple from boxes
and finally evaluating the user's qualification to ascertain
if it is satisfied for the tuple in question.

It is possible to define different FIND routines fcr
different operators as illustrated below. Suppose one
deflnes a new operator "#" which compares a box and =
line and returns true if the box s "to the left of’ the line.
The index b-index can be used to process queries involv-
ing the #| operator; however, a new FIND function must
be used:

use b-index with second-fn for (# line-ADT)
A user can submit a query such as

retrieve (b.all)
where b.box-desc # "0,0,1,3"

whereby he wants to see all boxes which are to the left of
the line from {0,0) to (1,3). If the grid structure for b-
index from Figure 1 is one unit long on each side, then
the boxzes which qualify must lie in grid cells 1, 6, 11 or 0
and the others can be excluded. The function second-fn
cen provide the needed semantics.

When more than one index can be used to process
an INGRES query, e.g.

where b.box.desc || "0,0,1,1"
and b.box.desc # "0,0,1,3"

then INGRES must choose which index to use in process-
ing the query. This 1s currently done by a hard-wired
strategy routine. To be able to choose in the above con-
text, this routine must be generalized to call both find
functions to obtain list of pages and then compare the
sizes of the results, choosing the smaller list for itera-
tion.

IV. APPLICATION OF ABSTRACT DATA TYPES

In [GUTT82] we described a CAD data base consisting
of integrated circuit descriptions as stored by a special
purpose graphics editor, KIC [KELL81]. A KIC data base
consists of a collection of circuit “cells". Each cell can
contain mask geometry and subcell references. Circuit
designs are hierarchical; a complete design expands into
a tree, with a single cell at the root and instances of
other cells, used as subcells, for the non-root nodes.
Cells are the building blocks used to construct a circuit
and include such objects as buffers, NOR gates and at a
higher level, PLAs and arithmetic logic units.

In [GUTT82] we also described a relational schema

I10

which models this data base consisting of five main rela-
tions:
cell-master (name, quthor, master-id)

bozx (oumner, layer, z1, z2, y1, y&8)

wire (owner, layer, wire-id, width, z1, y1, z2, y&)
polygon (owner, layer, polygon-id, vertnum, z, y)
cell-ref (parent, child, cell-ref+d, t11-t32)

In the cell-master relation, name is the textual
name given to the cell and author is the name of the per-
son who designed it. Master-id is a unique identification
number assigned to each cell. It is used for unambiguous
references to the cell within the data base.

The boz relation describes mask rectangles. Owner
is the identifier of the cell of which the box is a part.
Layer specifies the processing layer, e.g "polysilicon” or
“diffusion”. X! and z2 are the x-coordinates of the left
and right sides of the box while y¥! and y2 are the y-
coordinates of the top and bottom.

A "wire" is a set of lines that serves to make an
electrical connection between different parts of a circuit.
Each tuple in the wire celation describes one line seg-
ment, giving the coordinates of its centerline (z1, y1, z2,
y2) and its width. Wire-id is a unique identifler for a par-
ticular wire. Owner and loyer mean the same as in the
boz relation.

A polygon is a closed figure with any number of ver-
tices. One vertex is stored in each tuple of the polygon
relation. X and y are the coordinates of the vertex, and
vertnum orders the vertices (tuples) within one polygon.

Each cell-ref tuple describes the use of one cell as a
part of another, i.e. as a subcell. For example, suppose
that the cell REGISTER contained several LATCH subcells.
Then, there would be several cell-ref tuples, each con-
taining the i1dentifier of the REGISTER cell in the parent
field, and the identifier of the LATCH cell in the child
field. 711 through t32are a 3 X 2 matrix of floating point
numbers specifying the location, orientation and scale of
each subcell with respect t6 its parent. This representa-
tion of a spatial transform is the one generally used in
computer graphics [NEWM79].

To apply abstract data types to this application, we
suggest the following:

a) A data type "box-ADT".

The internal representation of a box can be four integers
representing the locations of the top, bottom and side
boundaries. The external representation can be a char-
acter string consisting of numbers separated by com-
mas, e.g. "0,0,1,1"

b) A data type "polygon-ADT".

The internal representation can be a fixed length string
of integers if a maximum number of vertices is
specifiable. For example, if 25 vertices are allowable,
then 50 integers can represent any polygon. I no upper
bound 1s possible, then ADTs can still be used. One can
allocate a polygon file external to the data base system
which will be used to store polygon descriptions. When a
new polygon is inserted, it will be physically placed in the
external file (say using a first fit or best fit placement
algorithm). The input conversion routine will then return
a byte offset and length which will be stored as a fixed
length object in the data base.

¢ o

gy

R

c) A data type "wire-ADT".

I all segments of a wire are the same width, then the
internal representation can be one integer for the width
and four integers for each segment giving the coordi-
nates of the endpoints.

d) a data type “array of fioats"”
The internal representation is the obvious one for the
required 3x2 matrix, t11, .. t32.

With these new data types we can simplify the schema
above to:

cell-master (name, euthor, master-id, defined)
box (owner, layer, box-desc)

wire (ouner, layer, wire-desc)

polygon (owner, layer, polygon-desc)

cellref (parent, child, cetl-ref-id, orientation)

Notice that box-desc, wire-desc, polygon-desc and orien-
tation are all new types.

The performance experiments in [GUTT82] involved
three common operations on VLSI data, namely retrieval
of the top level geometry for a given circuit cell, full
expansion of a design tree and retrieval ol the top level
geometry which falls in a particular geographic area. We
express the first and third queries for the original
INGRES schema below. Then, we introduce new operators
for our abstract data types which will simplify the
description of these queries.

In the following set of queries which retrieve the top
level geometry, CELLID identifies the cell to be displayed.
The first two queries sumply retrieve all the boxes and
wire segments belonging directly to the designated cell
in any order. The third query, which retrieves polygon
vertices, is more complicated because the vertices must
be produced in the correct order and grouped by
polygon-id and layer in order to sirnulate the operation of
KIC. All polygon data belonging to the given cell is first
gathered into a temporary relation, which is then sorted,
and finally the data is retrieved from the temporary and
passed to the user. In the actual performance tests data
was retrieved separately for each layer to accurately
emulate the operation of KIC.

range of bis box /* repeated for each layer */
retrieve (b.x1, b.yl, b.x2, b.y2)
where b.owner = CELLID and b.layer = value

range of w is wire /* repeated for each layer */
retrieve (w.layer, w.x1, w.y1, w.x2, w.y2)
where w.owner = CELLID and b.layer = value

range of p is polygon
retrieve into ptemp

{p.layer, p.polygon-id, p.vertnum, p.x, Py}
where p.owner = CELLID and b.layer = vaiue

modify ptemp to heapsort
on layer, polygon-id, vertnum

range of pt is ptemp /* repeated for each layer */
retrieve (pt.layer, pt.polygon-id, pt.x, pt.y)

The query below retrieves polygons from the top
level geometry which fall in a specific geographic window.
LEFT, RIGHT, BOTTOM and TOP are numbers giving the

1

boundaries of the window. Again, the modify command is
req\{xred to correctly order polygon vertices

range of p is polygon
retrieve into ntemn

(p.layer, p.polygon-id, p.vertnum, p.x, p.y)
where p.owner = CELLID

modify ptemp tr heapsort
on layer, polygon-id, vertnum

range of pt is ptemp

retrieve (pt.layer, pt.polygon-id, pt.x, pt.y)
where max(pt.x by pt.polygon-id) > LEFT
and mmun(pt.x by pt.polygon-id) < RIGHT
and max(pt.y by pt.polygon-id) > BOTTOM
and min(pt.y by pt.polygon-id) < TOP

With our abstract data types, we can rewrite the
queries for top-level geomnetry as

range of b is box
retrieve (b.layer, b.box-desc)
where b.owner = CELLID and b.layer = value

range of w is wire
retrieve (w.layer, w.wire-desc)
where w.owner = CELLID and b.layer = value

range of p is polygon
retrieve (p.layer, p.poly-desc)
where p.owner = CELLID and b.layer = value

This version will run faster because the delailed
representation of each kind of geometric object will be
bandled by special routines instead of the general pur-
pose query interpreter. Polygon retrieval will be much
faster, since it is no longer necessary for the data base
systemn to put the vertices in the correct order.

If we also use a polygon overlap operator <> similar
to the box overlap operator defined above, then we can
rewrite the query for polygons in a specific window as

range of p is polygon

retrieve (p.layer, p.polygon-id, p.poly-desc)

where p.owner = CELLID

and p.polys~n-desc <>
make-poly("LEFT,RIGHT,BUT3OM, TOP")

The new query has several advantages over the original
one. First, it is much clearer once the meaning of <> is
understood, because We avoid the awkward collection of
clauses in the qualification. Moreover, it will be faster
because the test for overlap with the window can be done
more efficiently in a special routine. Also, if an index
using the <> operator exists for polygon-desc then
INGRES can use it automatically to limit the number of
polygons inspected. Since the original form of the
qualification contained aggregates, no index could be
eflectively used and a search of all polygons was
required.

V. PERFORMANCE COMPARISON

As noted in Section 1V, performance improvement
from the use of ADTs can be realized from four sources:
1) Manipulation of a smaller number of zolumns. For
example, a box can be retrieved as a single column
rather than as four constituent parts.

2) Manipulation of fewer tuples, for example when
polygons are represented by single fixed-size tuples with
vertex lists stored externally.

3) Simplification of queries due to the introduction of
new operators. This is especially noticeable in spatial
windowing.

4) Use of abstract indices.

In this section we report on three different experi-
ments. First, we redo the performance comparison
between KIC and INGRES noted in [GUTT82]. This shows
the eflect of sources 1, 2 and 3. Since abstract indices
are not yet operational, our second experiment simu-
lates abstract indices in INGRES in order to predict the
performance improvement which we expect from source
4 with a full implementation. QOur last experiment con-
sists of retrieval of VLS! data represented as polygons
instead of boxes. This shows the improvement from
sources 2 and 3 and puts our current implementation ic
its best light.

In [GUTT82] a performance comparison was
reported between KIC and INGRES for the operations
mentioned in Section IV This comparison was performed
for data bases corresponding to two VLSI circuits under
development at Berkeley.

KIC stored the layout in virtual memory on a VAX
11/780 computer system using its own specially designed
data structures. The test machine had enough main
memory so that the layout could be entirely resident in
primary memory. On the other hand INGRES stored the
design as disk resident relations with only small portions
in a main memory buffer pool. Hence, the performance
comparison was between a system using special data
structures mostly in main memory and a system using
general purpose data structures mostly on disk. The two
systems also differed in that KIC clipped geometries to fit
an appropriate window on a graphics terminal while
INGRES did not simulate this operation.

Figure 2 surnmarizes the results of the first experi-
ment. The first two columns show the performance
difference between KIC and INGRES. KIC is assigned unit
response time and unit CPU usage while the performance
of INGRES is indicated relative to the KIC tune Note that
INGRES performs about a factor of 3 worse in CPU time
and S worse in response time for the top level geometry
and the tree expansion queries. For the spatial retrieval
it is a factor of 20 worse in CPU time and 45 slower
averall.

The reason for the poor performance on spatial win-
dowing is that KIC contains a geographic bin structure
for spatial indexing similar to that in Figure 1. No such
indexing is present in INGRES. Consequently KIC does a
restricted search while INGRES must perform an exhaus-
tive one.

Figure 2 also shows the performance of ADT-INGRES,
a version of INGRES with the addition of the abstract data
types mentioned in Section IV and an overlap operator.

KIC INGRES ADT-INGRES

Top level geometry

-CPU 1 3.2 3.6

-response 1 5.5 5.8
Tree expansion

-CPU 1 3.5 3.9

-response 1 5.1 5.8
Spatial window

-CPU 1 20 24

-response 1 45 51

Relative INGRES Performance
Figure 2

Notice that ADT-INGRES is about 10 percent slower than
regular INGRES on the top level and tree expansion tests.

12

This represents about half of the 20 percent exira over-
head needed to run the more general environment
according to the results reported in [FOGG82]. Source
number 1 apparently accounts for the 10 percent
difference. We anticipated that the addition of an over-
lap operator would improve performance considerably on
the spatial windowing test. However the results show no
improvement, probably because the extra overhead
incurred by loading the overlap routine dynamically at
run time cancels out the time saved during the actual
processing of tuples. Source 2, the processing of fewer
tuples for ADTs, has almost no effect because the design
data consists mostly of boxes, where the number of
tuples is the same. Unfortunately, the test data inctuded
only one polygon in the top level geomelry, and the
poiygon portion of the benchmark consumed almost no
time. The designers of the circuit in question chose to
rely primarily on boxes as a representation vehicle and
not on polygons. All complex shapes in the circuit
except one are made up of overlapping boxes.

The second experiment is intended to predict the
improvement we can expect from abstract indices. We
preprocessed the box, wire and polygon data to compute
a spatial bin for each object. This bin was stored expli-
citly in the data base and used as a key for a normal
INGRES secondary index. The spatial windowing bench-
mark was redone with this simulated bucketing and the
results are presented in Figure 3. Simulated bucketing
should closely mime an actual implementation of
abstract indices and a performance improvement of
nearly a factor of 2 should be realisable

KIC INGRES INGRES

with bins
Spatial window
-CPU 1 20 15
-response time 1 45 25

Performance of Simulated Spatial Index
Figure 3

The third experiment illustrates the performance
improvement that can be realized with ADTs when the
data is in the form of polygons instead of boxes.
Polygons offer an important advantage over boxes for
representation of complex geometric objects, namely
that each object can be stored explicitly as a single unit
instead of being made up of many apparently separate
boxes which may overlap. This advantage is clearly illus-
trated in design rule checking. When large shapes are
composed of many boxes, an overlap may or may not be
an error, but with single polygons an overlap is a clear
error.

For the third experiment we converted the boxes of
the design data into appropriate polygons, and compared
the performance of normal INGRES with ADT-INGRES
when retrieving top level polygons for a single cell
Without ADTs the query is

range of p is polygons
retrieve into ptemp (p.all) where p.owner = CELLID
range of pt is ptemp
modify ptemp to heapsort
on layer, polygon-id, vertnum
retrieve (pt.x, pt.y)

With ADTs the query becomes

range of p is polygons
retrieve into pternp
(p.polygon-desc) where p.owner = CELLID
range of pt is ptemp
modify ptemp to hash on layer
retrieve (pt.polygon-desc)

e

The results of the test are shown in Figure 4.

INGRES ADT-INGRES
Top level geometry
-CPU 1 i
-response 1 .64

Polygon Retrieval
Figure 4

These latter two tests suggest that our tactics can
save nearly half of the INGRES overhead for CAD data
that is polygon-rich. It is entirely possible that a more
efficient version of ADT-INGRES coupled with abstract
indices could be made attractive for CAD data from a
performance viewpoint.

VI. CONCLUSIONS

We have identified several issues that are importan*
in the the ongoing effort to improve the usefulness anc
performance of data base systems for use in CAD applica-
tions, and have shown how ADT columns in relations and
abstract secondary indices can solve some of these prob-
lems. We have described an implementation of ADT
columns in INGRES and have presented measurements of
performance improvement. Further work is in progress
in the area of access methods to support multi-
dimensional spatial searching and the implementation of
abstract data type secondary indices.

REFERENCES

[FOGG82] Fogg, D., "Implementation of Domain
Abstraction in the Relational Database
Systern, INGRES", Masters Report,
EECS Dept, University of California,

Berkeley, CA Sept. 1982.

Guttag, J., "Abstract Data Types and
the Development of Data Structures,”
CACM, June 1977.

Guttman, A. and Stonebraker, M.,
"Using a Relational Database Manage-
ment System for Computer Aided
Design Data”, Data Base Engineering,
June 1982.

Haskings, R. and Lorie, R., "On Extend-
ing the Functions of a Relationat Data-
base System,” Proc. 1982 ACM-SIGMOD
Conference on Management of Data,
Orlando, FL, June 1982,

Katz, R (editor)‘Special Issue on CAD
Data Bases, Data Base Engineering,
June 1982

Keller, XK., "KIC, A Graphics Editor for
Integrated Circuits” Masters Report,
University of California, EECS Dept,
June 1981.

Liskov, B. and Zilles, S., "Programming
With Abstract Data Types,” ACM-
SIGPLAN Notices, April 1974.

Lockmann, P. et al. '"Data Abstrac-
tions for Data Base Systems,” TODS, 4,
1, March 1979.

Newman, W. and Sproul, R., "Principles
of Interactive Computer Graphics,”
McGraw-Hill, NW. 1979

Ong, J., "The Design and Implementa-
tion of Abstract Data Types in the

[GUTT77]

[GuTT82]

[HASKSE2]

[KATZB2]

[KELL81]

[LISK74]

[LOCK79]

[NEWM79)

[ONGB2]

113

[ROWE79]

[SCHM78]

[STON75]

[STON78)

[STON80]

[STONBZ]

[WASS79]

RelationalADatabase System, INGRES,"
Masters Report, EECS Dept, University
of Califorma, Berkeley, CA Sept 1980.

Rowe, L. and Schoens, K., "Data
Abstraction, Views and Updates in
RIGEL,” Proc. 1979 ACM-SIGMOD
Conference on Management of Data,
Boston, Mass May 1979.

Schmidt, J., "Type Concepts for Data-
base Definition,” Proc. International
Conference on Data Bases, Haifa,
Israel, August 1978

Stonebraker, M., "Implementation of
Integrity Constraints and Views by
Query Modification,” Proc. 1975 ACM-
SIGMOD Conference on Management of
Data, San Jose, Ca., June 1975.

Stonebraker, M. et al., "The Design and
Implementation of INGRES," TODS 2, 3,
September 1976.

Stonebraker, M. and Keller, K,
"Embedding Hypothetical Data Bases
and Expert Knowledge in a Data
Manager,” Proc. 1980 ACM-SIGMOD
Conference on Management of Data,
Santa Monica, Ca., May 1980.

Stonebraker, M., "Adding Semantic
Knowledge to a Relational Database
System,” Proc. NSF Workshop ou
Semantic Modeling, Intervale, N.H.
June 1982 (to appear as Springer-
Verlag book edited by M. Brodie).

Wasserman, A.l, 'The Data Manage-
ment Facilities of PLAIN,” Proc. 1979
ACM-SIGMOD Conference on Manage-
ment of Data, Boston, Mass., May 1979

