Tioga: A Database-Oriented Visualization Tool *

Michael Stonebraker, Jolly Chen, Nobuko Nathan, Caroline Paxson, Alan Su, Jiang Wu

Computer Science Division, EECS Department
University of California

Berkeley, CA 94720

Abstract

In this paper we present a new architecture for vi-
sualization systems that is based on Data Base Man-
agement System (DBMS) technology. By building on
the mechanisms present in a next-generation DBMS,
rather than merely on the capabilities of a standard file
manager, we show that a stmpler and more powerful
visualization system can be constructed. We retain the
popular “boxes and arrows” programming notation for
constructing visualization programs, but add a “flight
simulator” model of movement to navigate the output
of such programs. In addition, we provide a means
to specify a hierarchy of abstracts of data of differ-
ent types and resolutions, so that a “zoom” capability
can be supported. The underlying DBMS support for
this system, Tioga, is briefly described, as well as the
current state of the implementation.

1 Introduction

Scientific visualization applications often deal with
data objects of very large sizes. Examples include
large regular arrays such as those found in global at-
mosphere and ocean circulation models[7] and in re-
mote sensing applications[l]. In addition, users often
wish to keep large numbers of such objects in an on-
line store. For example, the various Earth Science par-
ticipants of the Sequoia 2000 project[13] wish to keep
about 100 terabytes of easily accessible information.
In order to manage this large repository, they wish to
use the services of a Data Base Management System
(DBMS). Sequoia 2000 is utilizing the next-generation
DBMS, POSTGRES[12], for this purpose.

*This research was sponsored by NSF Grant IRI-9107455,
ARO Grant DAAL03-91-G-0183, DARPA Contract DABT63-
92-C-0007. Additional support was provided by the Univer-
sity of California and Digital Equipment Corporation under Re-
search Grant #1243.

Popular visualization systems such as AVS, Ex-
plorer, and Khoros provide only primitive data man-
agement support. In particular, they can only read
or write data from files, and they are geared toward
manipulating a fixed set of data types. It is cer-
tainly possible to build an interface between an ex-
isting DBMS and an existing visualization system by
adding a “query” box to the visualization system.
This approach, which we will call loose coupling,
is exemplified by the interface between several visual-
ization systems and POSTGRES[6]. However, much
more power and flexibility can be obtained by a tighter
integration of DBMS and visualization services, and
the basic purpose of of Tioga is to exploit this possi-
bility.

Conventional relational DBMSs lack the data mod-
eling flexibility to support scientific data adequately.
However, recently several “next-generation” DBMSs
have been built with enhanced data models, including
POSTGRES]8], IRIS[15], ORION][5] and Starburst[3].
Although we are building Tioga for the POSTGRES
DBMS, it could be easily interfaced to any next-
generation DBMS with the following three character-
istics. First, Tioga requires a DBMS which can be
extended with user-defined data types. Such types
can either be new base types which augment the stan-
dard collection of integers, floating point numbers
and character strings, or they can be composite data
types. Second, Tioga requires a DBMS which allows
users to store, or register, previously written func-
tions. Lastly, Tioga requires a DBMS with a multi-
dimensional access method such as R-trees[2] or grid
files[9].

In addition to tight DBMS integration, Tioga also
offers an enhanced browsing capability so users can
interact with the output of visualization programs.
Specifically, it offers a “flight simulator” user inter-
face so the user can “navigate” in information space.
Also, we allow visualization programs to be abstracts



for other programs. Using this capability, a user can
“zoom” into information space to obtain more detailed
information. To support this construct, the run-time
system will “stack” the currently running visualization
program and run a second one.

This paper is organized as follows. In Section 2 we
discuss the manner in which the boxes and arrows pro-
gramming paradigm is integrated into POSTGRES.
Then Section 3 discusses the way Tioga requires the
DBMS to interact with the user-space (client) portion
of the system. This interface is a generalization of
both traditional SQL cursors and database portals[10].
Section 4 indicates the run-time support provided by
POSTGRES for execution of Tioga boxes and arrows
diagrams. In Section 5 we describe how Tioga sup-
ports additional functionality in the areas of abstracts
of data, browser synchronization, versions, data entry
and interfaces to foreign systems. Lastly, in Section 6,
we conclude with an update of our current status and
a look at future issues.

2 The Tioga Programming Paradigm

Existing scientific programming systems allow the
user to create visual programs by connecting modules
written in a conventional programming language. The
modules are depicted on the screen as boxes with con-
nections for inputs and outputs. The user connects the
boxes with arrows to create a directed graph which
represents the final program. One or more boxes in
the diagram are input nodes which read data from
named files. Executing a diagram entails running the
read boxes and progressively running each box as its
inputs are available. Normally, the final box in the
graph is a rendering engine which displays the result
of the computation on the screen. The user can in-
teract dynamically with the diagram by changing the
parameters of the boxes, and the diagram is automat-
ically rerun to produce the new rendered output. In
this way, a user can iteratively produce the desired
visualization effect.

The Tioga architecture generalizes this boxes and
arrows user interface from commercial packages.
Specifically, Tioga supports the definition, manipu-
lation and execution of boxes and arrows diagrams,
which we term recipes. Individual boxes in a recipe
are called ingredients. The term recipe is used be-
cause a collection of ingredients is “cooked” into a final
visualization output.

One key to the Tioga architecture is that each func-
tion registered with POSTGRES is automatically an

ingredient, and is thereby in the menu of recipe build-
ing blocks. The menu of building blocks can thus be
constructed by simply reading the catalog of POST-
GRES registered functions.

In a boxes and arrows diagram, a one-way connec-
tion between two boxes indicates that the result of the
first ingredient 1s to be passed as input to the second
ingredient. In order for such a connection to be valid,
the data type returned by the first function must be
compatible with the type of one of the arguments of
the second function. Existing visualization systems
support a small collection of types and perform the
above compatibility check for each arrow.

POSTGRES supports a very sophisticated type
system, and Tioga must perform compatibility check-
ing in this environment. Specifically, it must ensure
that the output type exactly matches an input type of
the subsequent function, or the output type is a set of
the input type of the second function. In this latter
case the second function will have to be called multiple
times, once per element of the set. Types in the same
inheritance hierarchy are also compatible. For exam-
ple, if EMP is a subtype of PERSON, then outputs of type
EMP can be passed as input to a function expecting an
input of type PERSON.

As a recipe is being constructed by the user,
the editing program automatically performs type-
checking, since the input and return types of all func-
tions are known. The user is told if a connection is in-
valid, so that he or she can correct it. In addition, the
editor supports the use of optional icons to represent
types. We plan to encourage type creators to design
icons which give visual clues concerning the relation-
ship of the type to other types. For example, icons
of types within the same inheritance hierarchy might
have similar graphical features. In this way, the user
can be given visual clues concerning the compatibility
of types, allowing a kind of visual type checking.

When the user finishes editing a diagram, the ed-
itor notes which function inputs are missing. Inputs
are considered missing if they are not specified by an
incident edge from some other function. Function in-
puts which are not connected are treated as run-time
parameters. At recipe execution time, the user will
be interactively prompted to supply the missing val-
ues.

There are two semantically different kinds of recipe
building blocks. The first are conventional POST-
GRES functions as noted above. As will be explained
in Section 4, the code for these functions is executed
inside the POSTGRES DBMS when the recipe is

run. The second kind of building blocks are browsers.



These visualization boxes render screen images and
run as DBMS application programs. As such they ad-
here to the client-server communication protocol de-
scribed 1n the next section. There can be an arbitrary
number of browsers in a recipe. Sophisticated users
can define new kinds of browsers to meet specific ren-
dering needs.

Using the diagram editor, the user constructs a
recipe consisting of ingredients and browsers attached
together into a directed graph. Such a recipe can be
saved in the DBMS in two different ways. The recipe
can be stored as a graph-like structure in a cook-
book, a collection of recipes in the database. A user
can then search this cookbook using any DBMS query
capabilities.

Alternately, a recipe can be encapsulated or
canned into a new ingredient. In order for a recipe to
become an ingredient, it must be a legal POSTGRES
function, meaning it can only have a single output, and
it cannot have a browser. Once the recipe is compiled
into a single ingredient, its original structure is lost
and i1t becomes opaque to the user. Canned recipes
are added to the collection of POSTGRES functions
and hence, automatically augment the collection of in-
gredients for future recipes.

If a user wishes to run a previously constructed
recipe, he can do so from the diagram editor. The
appropriate ingredients are loaded, any missing input
parameters are prompted for at run-time, and a win-
dow for each browser is generated. To run the recipe,
the browsers communicate with the DBMS using the
protocol described in the next section.

3 Browser-DBMS Protocol

As noted in the previous section, a recipe consists
of a collection of interconnected functions, and it may
contain one or more browsers. Each browser is run
as a DBMS application program which interacts with
the recipe engine. The engine manages the execution
of the ingredients in the recipe. In this section we
describe the protocol for communication between a
browser and the DBMS. The interaction between the
human user and the browser is unconstrained; how-
ever, the protocol to be described is most natural for
a flight simulator paradigm, in which the user has
a joystick by which he can navigate in a data space.

Although it is possible to support an interface be-
tween the browser and the DBMS which allows brows-
ing of an arbitrary collection of DBMS types, we chose
a different approach. Each database object may be of

an arbitrary type, but it must have associated with it
a geometry. The geometry of an object describes its
location in an application coordinate space. All
objects in an application are located in this common
N-dimensional coordinate system, whose dimensions
are appropriate to the specific application. The ge-
ometry of an object may be either an N-dimensional
polyhedron or a point. It is the job of the human
recipe designer to ensure that the recipe produces the
geometry representation expected by some browser.
Failure to provide this will result in a type mismatch.

To achieve a common polyhedron representation,
we have defined a standard N-dimensional polyhedron,
N-D-polyhedron. The generic tuple passed to the
browser from a recipe will have the form:

{value, type, location}

The value can be an instance of a base type or a com-
posite type, and its location is represented by the N-D-
polyhedron as indicated. For example, the value might
be a satellite image; its type might be AVHRR, and
the location associated with it might be a rectangle
representing one of the quadrangle of a U.S. Geologi-
cal Survey map.

With these preliminaries, the protocol between the
browser and the recipe execution engine consists of the
following commands:

MARK (N-D-point) with identifier

ERASE identifier

MOVE to identifier

MOVE to (N-D-point)

MOVE along (A1, ..., Ayx) until F(value)
<operator> <constant>

FETCH (number)

FETCH (Ay, ..., Ay)

The browser can mark any position in N-
dimensional space with an identifier, so that it can
return to that point at a later time. This is useful in
marking points of interest.

The browser has three ways to relocate its position
in N-space: it can move to a previously designated
identifier, it can move to a specific N-D-point which
it calculates in some fashion, or it can move in some
direction, denoted by (Aq, ..., Ay) until some condi-
tion

F(value) <operator> <constant>
is true. This third relocation command is useful, for
example, if a user is browsing Hurricane Hugo, and

wishes to fast-forward the hurricane, i.e. skip or
skim through images sorted by time, until Hugo hits



land. If landfall of the hurricane can be expressed as
a predicate, then the appropriate MOVE command
would look like

MOVE along (0,0,...,+1) until
hits_land(Hurricane.hugo) = TRUE

The 41 means a movement along the positive time
axis, assuming time is the last dimension in this co-
ordinate system. Note that recipes may be fast-
forwarded in this fashion in any dimension.

There are two ways to fetch data: first, the browser
can request a fixed number of instances; second, it
can request all the instances within a specific N-
dimensional rectangle. In the first case, the number of
instances requested is returned by running the recipe
forward from its current position. Since the recipe de-
termines the ordering of instances, it implicitly speci-
fies what the “forward” direction of instance produc-
tion is. In the second case, the rectangle is specified
by a collection of offsets from the current position in
the application coordinate system.

As the user moves through N-space with a joystick-
like interface, it is the responsibility of the browser
module to 1ssue the appropriate move and fetch com-
mands to support the user. It is also the browser’s re-
sponsibility to display appropriately the values which
are returned from the recipe in a fashion similar to
that of SDMS[4].

To assist the browser, each type implementor is ex-
pected to define a display function in POSTGRES of
the form:

display(object,location screen-resource)

The location of the object is an N-dimensional poly-
hedron. The screen-resource argument specifies the
screen resources which are available for the display
of this object such as the dimensions in pixels of the
area and the number of bits of color available. Given
these parameters, the display function returns to the
browser a screen representation for a given data ob-
ject.

The display function can return either a render-
able object or a set of sub-objects which individu-
ally need to be passed to display functions. The lat-
ter mechanism allows for a hierarchical decomposition
of a complex object into simpler objects to be dis-
played. For example, a browser could display informa-
tion about employees by calling the display function
with the appropriate instances and locations. This
function would either be a generic one or one written
by the designer of the EMP class. The display func-
tion could return an image of the employee’s face, or

the display function could return separate data ob-
jects which make up an EMP instance, such as the em-
ployee’s salary, department, name, and picture. These
can then be separately rendered by calling the display
function again for each one.

4 Recipe Execution

At first glance, Tioga may seem to be merely a
convenient query tool for a next-generation system.
Compiling (or cooking) a recipe entails converting the
graph into a collection of queries on the DBMS, re-
sulting in one or more query plans. This is similar to
compiling the output of any other query tool. How-
ever, recipes differ from queries in four crucial ways.

First, when a recipe is executed, the Tioga opti-
mizer receives a directed graph of ingredients, each of
which corresponds to a query. This should be con-
trasted with a traditional DBMS which accepts a sin-
gle query.

In order to support Tioga recipe execution, we are
extending the POSTGRES executor so it can run a
megaplan, which is a directed graph of nodes, each of
which is a query plan. Specifically, we have introduced
a plan node which is a tee, or fork, that connects the
output of one plan to the input of one or more other
plans. Megaplans are query plans with tee nodes in
them.

When a recipe is inserted into a cookbook, each
ingredient can be optimized by a traditional DBMS
optimizer. The resulting megaplan is stored for subse-
quent execution by an extended execution engine. An
optimization available on megaplans is to coalesce
multiple query plans into a single composite query
plan. Tioga will optimize by coalescing queries when
coalescing results in more efficient execution.

Second, ingredients have run-time parameters
which are changed frequently. For this reason, it is
advantageous to buffer the output of some (or all)
ingredients, so that changes in downstream parame-
ters do not require recalculation of upstream ingredi-
ents. Where to buffer i1s a second decision which must
be optimized. Buffering and coalescing decisions are
interrelated, because coalescing two ingredients into a
single query plan removes the opportunity to buffer at
the output of the first ingredient. Hence, both kinds of
optimization must be performed in a unified manner.

Third, the browser interface allows repeated re-
questing of information which has been previously
retrieved. Hence, it is advantageous to buffer the
output of the ingredient immediately preceding a



browser. This output must be indexed using a multi-
dimensional access method, such as an R-tree, in or-
der to allow re-requested information to be located
quickly.

Fourth, Tioga is demand-driven. A megaplan
can have several browsers attached to it, each indepen-
dently requesting records. Current query plans have
a distinguished root node which outputs records to an
application. In Tioga, each browser requests one or
more records from a node of a plan, which responds
by requesting records from its descendent nodes. The
process completes when a node in the plan can deliver
records, which then flow up the plan to satisfy the
outstanding request.

When two browsers operate on a megaplan, then a
tee must be present. If one browser requests records
and the second one does not, then recipe execution
will continue the evaluation of the megaplan to gener-
ate the records required by the first browser. The state
of the tee junction will advance to that required by the
first browser, and the second browser will thereby lose
its place. Buffering at the tee will allow recipe exe-
cution to avoid the subsequent recomputation of the
state of the second browser when it resumes requesting
records.

To optimize a megaplan, we therefore must decide
when to coalesce two ingredients in a megaplan and
where to insert buffers. The details of our algorithms
are beyond the scope of this paper and are discussed

in[14].

5 Extensions to Recipe Management

By using a DBMS to support the data needs of
recipe management, we are able to provide additional
functionality for Tioga. In the following subsections,
we present the Tioga approach to abstracts, synchro-
nization of browsers, data entry, and interface to for-
eign systems.

5.1 Abstracts

A crucial capability of Tioga is user control over the
resolution of the visualized information. For example,
the user interface must allow the user to zoom in on
recipe output to obtain more detail or to zoom out to
coarser granularity. To satisfy this requirement, the
recipe execution system must be capable of producing
recipe output at varying levels of detail.

The zoom in/zoom out capability is reminiscent of
SDMS[4], where additional detail appeared automat-
ically and was hard-wired into the system. In Tioga

we are implementing a much more flexible scheme. We
allow every recipe to have one or more children, which
will be termed abstracts for the given recipe, since
they contain less information. Conceptually, they are
analogous to textual abstracts for a conventional doc-
ument. Note that an abstract need not produce the
same type of information as does its parent. For ex-
ample, an abstract for an image of Hurricane Hugo
could be a hurricane icon and an abstract for the icon
could be the character string “hurricane”.

We organize recipes into a directed graph of ab-
stracts so that an edge from one node to another in
this graph indicates “is abstracted by.” If there i1s an
edge from P to C, then C is an abstract of P. P is also
the parent of C, and P contains more information than
C. Each edge in this directed graph is labeled with a
notation concerning how the abstract loses informa-
tion. Example notations include “lower resolution,”
“lower precision,” and “lower accuracy.”

Each recipe in the graph of abstracts has two asso-
ciated constants. These are the maximum and mini-
mum screen window sizes, specified in the application
coordinate system, that this recipe can tolerate. When
the browser executes a MOVE or FETCH command,
it checks whether the window size currently requested
is between the two bounds noted above. If so, it pro-
cesses the request using the active recipe. The display
functions for the objects that appear on the screen are
assumed to scale their objects appropriately to fit in
the available screen real estate. Put differently, the
maximum and minimum window sizes must be chosen
to assure that the display functions can perform this
scaling.

If the window size is smaller than the minimum,
then the browser is being called on to display more
detail than is possible using the current recipe and it
must move to a parent recipe that can display more
information. Alternately, if the window 1s too large,
then the current recipe displays too much detail, and
the browser must move to a child of the active recipe.
If the directed graph has multiple parents or children,
then the browser will prompt the user with the labels
on the arcs, so he can choose the recipe that is appro-
priate to his needs.

Lastly, all recipes in the directed graph of abstracts
must have the property that the maximum window
size for a parent is larger than the minimum window
size for any of its children. Moreover, the maximum
window size of any parent must be smaller than the
maximum window size of each of its children. In other
words, the maximum window size of a parent must be
within the legal window size range of its children. In



this way, when the parent recipe is zoomed out of, a
child recipe with less detail can be used to accommo-
date the current window size. Similarly, the minimum
window size of a child recipe must be within the le-
gal window size range of its parent. This facilitates
zooming into a parent recipe for more detail.

When the recipe engine switches to a new recipe,
it must save the old one, load the new one and then
position it at the correct location. The browser can
then perform a FETCH command to refresh the screen
with objects from the new recipe. This will be an
overhead-intensive operation which will probably gen-
erate a pause in the zooming operation. To allevi-
ate this “heavyweight” recipe switch, Tioga allows a
node in the abstract graph to be a function. In this
case, the recipe execution engine will run the function
on the existing data from its child node to produce
a more detailed representation. This reduces greatly
the overhead of zooming.

5.2 Synchronization of Browsers

A traditional user interface has a single database
cursor through which the result of a query or a view
can be delivered to an application program. A Tioga
user, 1n contrast, might put several browsers in his di-
agram and then visualize the data at several points in
the diagram simultaneously. Multiple browsers must
be synchronized when a recipe switch occurs due to
zooming and abstracting. To support such synchro-
nization, we use named browsers. If the user zooms
in and activates a new recipe in the abstract graph,
then his display should seamlessly change to the out-
put of the correspondingly named browsers in the new
recipe.

The user may also wish to constrain multiple
browsers in some manner. For example, he may wish
to specify that two browsers be overlaid. This means
that the data that they display should be superim-
posed in the same visual window, rather than placed in
separate windows. The user may also wish to specify
that two browsers be synchronized so that one browser
is a slave to a second one. In this case, whenever a
move or fetch operation 1s performed by the master
browser, the same operation would be performed by
the slave browser.

Synchronizing a slave browser is accomplished by
constraining the slave’s input controls to those of the
master. In other words, the slave’s joysticks and in-
put widgets, which allow the user to direct viewing,
are controlled by the master. Any joystick commands
given by the user to the master are identically dis-
patched to the slave browser. Thus, any move or fetch

operation performed by the master browser would re-
sult in the same move or fetch operation in the slave
browser. We also permit a translation function
to be defined which translates the input controls of
the master browser to the input controls of the slave
browser. For example, a slave browser can be set up
so that its controls are at a fixed offset away from the
controls of the master browser. This may be useful,
for example, if one wishes to view simultaneously two
portions of a map, separated by a fixed distance.

5.3 Versions

POSTGRES supports the notion of time travel for
data objects[11]. When an object is updated, the old
value may be kept in the database, along with the new
one. Both objects are time stamped, so either can be
subsequently retrieved by specifying the desired logical
time of a query. For example, the following query finds
Mike’s salary from the EMP class as of July 12, 1991:

retrieve (EMP.salary)
using EMP [July 12, 1991]
where EMP.name = “Mike”

This capability is also used in the system cata-
logs, where metadata for the database is stored. In
particular, there i1s one catalog where information on
user-defined functions is stored. Whenever any user-
defined function 1s redefined, perhaps because the al-
gorithm it implements has been improved, the old ver-
sion of the function can be retained. The same time-
versioning available for data i1s hence also usable for
functions. As a result, whenever any function in a
recipe 1s improved, a new version of the recipe is auto-
matically defined. The user can decide which version
of the recipe he wants to invoke by indicating the log-
ical time for the recipe that he wishes to use.

More generally, if a user changes the structure of
a recipe, then the previous version is automatically
retained. Again, either version can be executed by
indicating the desired logical time. Lastly, when a
user runs a recipe and specifies a set of run-time pa-
rameters, the parameter combination is stored in a
database class which is also time-versioned. The next
time this user runs the recipe, his run-time parameters
can be retrieved from the table instead of having to
be specified again. If the user executes an older time-
version of a recipe, the corresponding time-versioned
parameters are used.



5.4 Data Entry

The recipes in this paper have focused on getting
data out of the DBMS and onto the screen. However,
there are applications where users wish to perform
data capture with Tioga. For example, a user might
wish to have a continuous data feed from a satellite
which he wished to use as input to a recipe. This
recipe might process the raw imagery and store a re-
fined version in the data base. In this case, the recipe
is capturing data from an external source and entering
it into the DBMS. To support such recipes, we need
two additional constructs in Tioga.

The first is another type of box, which we term a
hand. Like a browser, a hand is a program which runs
in user space, not inside the DBMS. However, a hand
requires a different protocol than the one described in
Section 3. A hand is a box which produces an output
of some legal POSTGRES type, or more usually, a
set of some type, and it may or may not have inputs.
Hands can interact with subsequent boxes using the
normal Tioga protocol for passing results of functions
to subsequent functions, but with one key difference.
Because a hand runs in user space, the results Tioga
accepts from a hand come from a different process,
whereas normal boxes interact with one another in
the DBMS address space.

Fortunately, POSTGRES supports the notion of
untrusted functions. The basic idea is that a data
base administrator can decide whether a function is
trusted and runs in the DBMS address space or is
untrusted and runs in a separate address space. If a
function is not yet thoroughly debugged, it should be
considered untrusted, so that a crash will only bring
down the address space in which the function 1s run-
ning and not the whole DBMS. Untrusted status is
likewise appropriate if the data base administrator is
convinced that the function might attempt unautho-
rized data accesses.

A hand is simply a POSTGRES function that runs
in untrusted mode. Hence, Tioga runs recipes that
contain a mixture of trusted and untrusted functions.

As noted in Section 4, Tioga recipes are demand
driven by requests from the attached browsers. How-
ever, in recipes without a browser, we require a mech-
anism to drive recipe execution. In such recipes there
will be one or more boxes which are sink nodes. They
do not generate output for other boxes to consume.
Using the satellite feed example above, the sink would
be a box which performed DBMS insert operations,
but had no output arrows. At any such sink node,
Tioga must attach an artificial browser. This browser
simply executes a “fetch all” command, which will

cause the sink box to be called repeatedly. This will
iteratively prompt upstream boxes and serve as the
source of demand to drive recipe execution. Conse-
quently, the second extension for recipes which cap-
ture data is to attach artificial sink nodes demand
data.

5.5 Foreign Systems

A desirable feature of Tioga would be to allow data
to be received from foreign systems as well as sent to
foreign systems. These include other DBMSs, statisti-
cal packages, and other visualization systems. Hands
are a natural way to get data from other systems, as
noted in the previous subsection. To send data to
other subsystems, one can also use the hand mecha-
nism. This simply requires a hand which takes input
from elsewhere in a Tioga recipe, but produces no out-
put visible to the recipe. Instead, it sends output to
the foreign system. This hand will be a sink node,
as explained above, and Tioga will attach an artifi-
cial browser to “pull” data through this node into the
foreign system.

The last desirable extension would be to support
an interface to a foreign system that allowed data to
be received from the foreign system. The results pro-
duced by the foreign system would then be inserted
back into the recipe. Such functionality would be
appropriate to a package which performed data val-
idation and discarded the outliers, for example. This
capability is easily supported in two different ways.
First, it can be supported by making the foreign sys-
tem a hand. Alternately, the foreign system could be
a browser. In this case, the browser definition must be
extended to allow output arrows to other recipe boxes.

6 Conclusion

We have described a system for database support of
scientific visualization applications. Providing a nat-
ural user interface for the scientist has motivated our
work on multiple browsers for a recipe and intelligent
buffering of computed data. At the current time, we
have an N-dimensional browser, the diagram editor
and the recipe storage system working. We are begin-
ning work on the optimizer and executor extensions
discussed in Section 4, and expect to have a complete
system within six months.

We seek to extend Tioga in several different direc-
tions. For example, POSTGRES supports a sophisti-
cated rule management system[12], and we require a



mechanism to use these capabilities in the Tioga en-
vironment. POSTGRES also allows a user program
to specify transaction boundaries, for which POST-
GRES will guarantee standard transaction semantics.
The integration of transaction support into Tioga is
another area of current investigation.

References

(1]

[2]

Dozier, J., “Spectral Signature of Alpine Snow
Cover from the Landsat Thematic Mapper,” Re-
mote Sensing Environment, March 1989.

Gutman, A., “R-trees: A Dynamic Index Struc-
ture for Spatial Searching,” Proc. 198§ ACM-
SIGMOD Conference on Management of Data,
Boston, MA, June 1984.

Haas, L. et. al., “Starburst Mid-Flight: As the
Dust Clears,” IEEE Transactions on Knowledge
and Data Engineering, March 1990.

Herot, Christopher F., “Spatial Management of
Data,” ACM Transactions on Database Systems,
December 1980.

Kim, W., Garza, J.F., Ballou, N., Woelk D.,
“Architecture of the ORION Next-Generation
Database System,” [IEFEE Transactions on
Knowledge and Data Engineering, March 1990.

Kochevar, P. et. al., “A Simple Visualization
Management System: Bridging the Gap Between
Visualization and Data Management,” Sequoia
2000 Technical Report 93/27, University of Cali-
fornia, Berkeley, CA, July 1993.

Mechoso, C. et. al., “Distribution of a Coupled
Atmosphere-Ocean General Circulation Model
Across High-Speed Networks,” Proceedings of the
4th International Symposium on Computational
Fluid Dynamics, 1991.

Mosher, C. ed., “The POSTGRES Reference
Manual,” Electronics Research Laboratory, Uni-
versity of California, Berkeley, CA, Memo 93/57,
July 1993.

Nievergelt, J. et. al.; “The Grid File: An Adapt-
able, Symmetric Multikey File Structure,” ACM
Transactions on Database Systems, March 1984.

Stonebraker, M. and Rowe, L., “Database Portals
- A New Application Program Interface,” Pro-
ceedings of the 10th International Conference on
Very Large Databases, Singapore, August 1984.

[11]

[15]

Stonebraker, M., “The POSTGRES Storage Sys-
tem,” Proceedings of the 13th International Con-
ference on Very Large Databases, Brighton, Eng-
land, August 1987.

Stonebraker, M. et. al., “The Implementation of
POSTGRES,” IFEE Transactions on Knowledge
and Data Engineering, March 1990.

Stonebraker, M. and Dozier, J., “SEQUOIA 2000:
Large Capacity Object Servers to Support Global
Change Research,” SEQUOIA 2000 Technical
Report 91/1 Electronics Research Lab, Univer-
sity of California, Berkeley, CA, July 1991.

Stonebraker, M. et. al., “Tioga: Providing Data
Management Support for Scientific Visualiza-
tion Applications,” Proceedings of the 19th In-
ternational Conference on Very Large Databases,

Dublin, Ireland, August 1993.

Wilkinson, K. et. al.; “The TRIS Architecture and
Implementation,” IEEE Transactions on Knowl-
edge and Data Engineering, March 1990.



