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Abstract

Sharing has emerged as a key idea of static and
adaptive stream query processing systems. Inher-
ent in these systems is a tension betweensharing
common workand avoidingunnecessary work.
Increased sharing has generally led to more un-
necessary work.

Our approach ofprecision sharingaims to share
aggressivelywithoutunnecessary work. We show
why “adaptive” tuple lineage is more generally
applicable and use it for precisely shared static
dataflows. We also show how “static” ordering
constraints can be used for precision sharing in
adaptive systems. Finally, we report an experi-
mental study of precision sharing.

1 Introduction
Data streaming systems support long running continuous
queries. Since many queries are concurrently active over
common streams, shared processing is very attractive.

Two approaches to shared stream processing have
emerged. In systems like NiagaraCQ [6], Aurora [3] and
STREAM [14], tuples flow throughstatic dataflow net-
works. In contrast, the idea ofadaptivequery processing
has led to approaches like CACQ [12], PSoup [4], Tele-
graphCQ [5] and “distributed eddies” [18] where tuples are
variably routed through an adaptive network.

Sharing in streams, as in classical systems (Sellis [16])
aims “to limit the redundancy due to accessing the same
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data multiple times in different queries.” We illustrate this
redundancy with a two query example in Figure 1.

Figure 1: Sharing 2 queries: redundancy and waste

In the example, the queries’ result sets overlap. With-
out sharing, the overlapping tuples are produced twice -
a redundancy. In attempting to avoid redundancy, how-
ever, current shared schemes produce too much data. In
the figure, a shared scheme from the literature (such as Ni-
agaraCQ) would produce the tuples in the entire rectangle,
including the “useless tuples” in the two darkly shaded re-
gions. Thus, it would appear that sharing has to balance the
inherent tensions of:

• Repeated workcaused by applying an operation mul-
tiple times for a given tuple, or its copies.

• Wasted work caused by the production and removal
of “useless tuples”.

While existing systems have taken this tension for
granted, the goal of our paper is to show that this ten-
sion is not, in fact, irreconcilable; to design and implement
techniques that resolve the tension in static and adaptive
dataflows; and to experimentally verify these techniques.

1.1 Precision Sharing

Precision sharingis a way to characterize any shared query
processing scheme. We show that when sharing is precise,
it is possible to avoid the overheads of repeated workas
well as that of wasted work. Precision sharing applies to
static and adaptive streaming systems, and is orthogonal
to query optimization. It can also be used with traditional
multiple-query optimization (MQO) schemes.
Static shared dataflows

We first show how NiagaraCQ’s static shared plans are
imprecise. We then consider tuple lineage, an idea from
the adaptive query processing literature. While lineage has



been thought of as useful in highly variable environments,
our insight is that it is more generally applicable. Specif-
ically, we show how to use tuple lineage to make static
shared dataflows precise. We call our approachTULIP, or
TUple LIneage in Plans.
Adaptive shared dataflows

Next we show how the CACQ shared adaptive dataflow
system is also imprecise. Our strategy toward adaptive pre-
cision sharing is to borrow from the static world. We show
how we can place constraints on how tuples are routed in
an adaptive scheme to ensure that sharing is precise. Our
approach isCAR, or Constrained Adaptive Routing.

We implemented both schemes,TULIP andCAR, in the
TelegraphCQ system that we are building at Berkeley.

1.2 Contributions

Our contributions in this paper are to:

1. Argue that the tension between avoiding the overheads
of repeated work and wasteful work in sharing is not
irreconcilable, and defineprecision sharingto show
how both overheads can be reduced in tandem.

2. Demonstrate the general utility of tuple lineage be-
yond adaptive query processing, and show how it can
be used to achieve static precision sharing.

3. Show how to implement adaptive precision sharing
with proper operator routing.

4. Validate our claims experimentally.

The rest of this paper is organized as follows. We briefly
describe relevant work on shared stream processing in Sec-
tion 2. Next, in Section 3, we define precision sharing and
explain pitfalls in prior art. This is followed by a descrip-
tion of TULIP in Section 4 and a study of its performance
in Section 5. We then presentCAR in Section 6 followed
by more experiments in Section 7. We end with a summary
of our findings in Section 8.

2 Shared queries on streams
In this section we briefly describe the two major approaches
to sharing: static query plans and adaptive dataflows.
While sharing has also been studied in the multiple-query
optimization (MQO) literature [16], there has been compar-
atively less work on shared processing of queries over data
streams and the related topic of pipelined MQO [8, 17].

As has been well noted[12, 14], pipelined join operators
are a natural fit for streaming query processors. For this
reason we assume the exclusive use of symmetric join op-
erators for the rest of this paper. This also simplifes the
MQO problem by limiting the choice of join operators.

2.1 Static shared plans

The first approach we describe is the logical extension of
traditional pipelined query plans to shared data stream pro-
cessing. Here, a set of continuous queries is processed us-
ing a single static query plan that is a dataflow network of

relational algebra operators. Figure 2 shows an example of
a static dataflow that represents two shared queries.
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Figure 2: Static shared dataflow example

When new tuples arrive in the system they are driven
through the network according to an operator scheduling
policy. While different operators may be executed at dif-
ferent times, thepathstaken by a tuple from a given stream
to its various destinations are always the same1. Sharing is
thus determined entirely by sub-expressions that are com-
mon to individual queries. This model has been adopted
by NiagaraCQ, Aurora, and STREAM. NiagaraCQ [7, 6]
describes ways to formgroupedplans for multiple queries.

There are in general two approaches to MQO: (a) opti-
mize each individual query and then look for sharing op-
portunities in the access plans, and (b) globally optimize
all the queries to produce a shared access plan.

The first approach is easier to employ and is used in
NiagaraCQ to group together plans for queries with sim-
ilar structure. When new queries enter the system they are
attached to an existing group whosesignatureit matches
closely. A query that has many signatures is merged into
multiple groups in the system.

2.2 Adaptive shared dataflows

The second approach we review is based on the idea
of adaptive tuple routing and used in TelegraphCQ [5],
CACQ [12] and PSoup [4]. In this approach too, a set of
queries are decomposed into a dataflow of relational alge-
bra operators. The major differences are: (a) the dataflow
is adaptive and can route tuples in a variety of different
ways, (b) tuples are extended to carry their “lineage” con-
sisting of “steering” and “completion” vectors, and (c) the
operators are aware of the completion vector of each input
tuple - in other words two otherwise identical tuples with
different completion vectors may be processed differently.
We discuss adaptive dataflow technology in more detail in
Section 6.

3 Precision Sharing

In this section we introduce and explain the importance of
precision sharing, a way to characterize the overheads of
shared query processing. We then show how current sys-
tems result in plans that are not precisely shared. We begin
by defining precision sharing in terms of all operations per-
formed on tuples in a shared dataflow.

1Work [10] on dynamism in static plans has generally been limited to
one-timelate-bindingbased on query parameters.



Precision sharing: A sharing scheme where for all stream
inputs, the following propertiesbothhold:

PS1 For each tuple processed, any given operation may be
applied to it, or any copy of it, at most once.

PS2 No operator shall produce a “zombie” tuple; that is,
a tuple whose presence or absence in the dataflow has
no effect on the result of any query, irrespective of any
other possible input.

A plan that does not satisfy PS1 suffers from redun-
dancy overheads. A plan that does not satisfy PS2 results
in the wastefulproductionand subsequenteliminationof
zombies. We say that a given plan isprecisely sharedif it
satisfies both the properties PS1 and PS2 for all inputs.

Approaches in the MQO literature [16, 17, 8] have all
assumed that reducing redundancy is paramount, without
considering its side-effects. This definition of precision
sharing lets us characterize the nature of such side-effects,
and is essential to limiting unnecessary work for the query
processor.

We now consider examples of imprecise sharing of join
queries in the presence of selections on individual sources.
We build on an example studied in NiagaraCQ [6, 7].

3.1 Imprecise sharing in action

Consider the following scenario involving two queries,Q1

andQ2, each of which join the streamsR andS and apply
a unique selection predicate onR.

• Q1 : σr1(R) on S
• Q2 : σr2(R) on S

NiagaraCQ suggests the two alternate plans for these
queries. The plan in Figure 3(a) usesselection pull-upto
share theRS join. In Figure 3(b) we seeselection push-
down where tuples inR are split according to the predi-
cates first and then run in separate join groups. In actual-
ity, NiagaraCQ combines theSplitoperator and its immedi-
ate downstream filters together, using an index for the filter
predicates. We separate them for ease of exposition. Also,
we useOut to represent a generic output operator that is
equivalent toTriggerActionin NiagaraCQ.
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(a) Selection pull-up (b) Selection push-down

Figure 3: Imprecise sharing of joins with selections

Selection push-down (Figure 3(b)) violates PS1 in two
ways. First, a tuplerx fromR that passes both predicatesr1

andr2 will be processed in both join operators, producing
identical join tuples. Second, every tuple fromS will be
inserted twice in each join operator (assuming symmetric
hash joins). Note that in this selection push-down example,

PS2 is obeyed as each tuple from each join operator must
satisfy at least one query.

Selection pull-up (Figure 3(a)), on the other hand, vio-
lates PS2. For example, the output of the join operator can
include an(rx, sx) tuple whererx fails both predicates,r1

andr2, satisfying neither query. The tuple(rx, sx) is an
example of a zombie tuple, and shows how increased shar-
ing can cause wasteful work. Note that this plan has only
one join operator that produces the common sub-expression
R on S and has no redundancy. Since no operation is ap-
plied on any tuple more than once, this satisfies PS1.

We have seen how both pull-up and push-down violate
at least one of the properties of precision sharing. A third
alternative, however, was proposed in later work on Nia-
garaCQ [7]. This is a variant of pull-up calledfiltered pull-
up which creates and then pushes down predicate disjunc-
tions ahead of the join. In this example, the disjunctive
predicate(r1 ∨ r2) is pushed down between the join and
the scan onR. Such a plan is shown in Figure 4.
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Figure 4: Precisely shared filtered pull-up

Unlike pull-up, the filtered pull-up plan for this example
satisfies PS2. This is because everyR tuplerx that reaches
the join operator must have passed at least one of ther1 and
r2 predicates. So every join tuple(rx, sx) must also satisfy
at least one of the queriesQ1 andQ2. Filtered pull-up also
satisfies PS1 here for the same reasons as selection pull-up.

The filtered pull-up plan for this example satisfies both
the properties PS1 and PS2. We now have an example of
a sharing scheme that is precise. It is not surprising that
the experimental and simulation results in NiagaraCQ [7]
generally show this plan as the most efficient. It is reason-
able to ask if a filtered pull-up plan will always be precisely
shared. It turns out that the answer is no, and we explain
why in the next section.

3.2 Why filtered pull-up is not good enough

We now show why a filtered pull-up strategy is not pre-
cisely shared in general. We demonstrate this with an ex-
ample where two queries,Q3 andQ4, join the streamsR
andS and apply unique selection predicates onbothR and
S. Notice that the only differences from the previous ex-
ample are the selection predicates onS.

• Q3 : σr1(R) on σs1(S)
• Q4 : σr2(R) on σs2(S)

The filtered pull-up technique suggests that we pick the
plan in Figure 5. The behavior of this query plan is shown
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Figure 5: Imprecisely shared filtered pull-up

in Figure 6. In the figure,R1 andR2 are respectively de-
fined asσr1(R) andσr2(R). Similarly, S1 andS2 are re-
spectively defined asσs1(S) andσs2(S).

Figure 6: Filtered pull-up and zombies

Observe that the inputs to the join operator are the sets
R1 ∪ R2 andS1 ∪ S2, and the join operator produces the
set(R1 ∪ R2) on (S1 ∪ S2). Notice that this is a superset
of (Q1 ∪ Q2), our desired result. These extra tuples are
zombies and are indicated in the figure as the two darkly
shaded areas inside the smaller rectangle.

With two queries, it is easy to see the relationship be-
tween result set commonality and waste. When the inter-
section ofQ1 and Q2 (result set commonality) is larger,
the wasted work is less and vice versa. When more queries
are added to the system, however, situations with high com-
monality and high waste are easily possible. In Figure 7 we
show an illustration of such a scenario. The lightly shaded
areas represent results of individual queries. The darkly
shaded areas denote zombie tuples that are produced for no
utility. In such cases, when there is both redundancy and
waste, both the push-down and pull-up models are expen-
sive.

The upshot of this example is that in spite of pushing
down disjunctions, in the presence ofsharing, a join can
produce unnecessaryzombietuples that have to be elimi-
nated later in the dataflow. With many queries this wasted
work can increase significantly.

In this example, the worst case overhead of lost preci-
sion is the maximal area of the region identified as the out-
put of the shared join operator, i.e.,|R1 ∪ R2|×|S1 ∪ S2|.
With two streams, the overhead is quadratic. As the num-
ber of streams increase, the overhead becomes more sig-

Figure 7: Zombies with many queries

nificant. In fact, it becomesexponentialin the number of
participating streams. We see more examples of this in the
next section.

3.3 Disjunctions on intermediate results

We have shown how filtered pull-up can cause the produc-
tion of zombie tuples, violating property PS2. Now, we
will show how zombies cause further inefficiencies when
they participate in later join work, producing even more
zombies. Consider what happens when the queries in the
example from Section 3.2 above also involve a third stream
T .

• Q5 : σr1(R) on σs1(S) on σt1(T )
• Q6 : σr2(R) on σs2(S) on σt2(T )

A solution based on the pull-up strategy is to reuse the
shared plan ofQ3 andQ4 from Figure 5 and attach a join
operator withT to each ofOutQ3 andOutQ4 . That ap-
proach, however,could result in substantial duplicate join
processing if there is significant overlap in the result sets
of Q3 andQ4. This causes the appearance of a PS1 viola-
tion, which was not present in either of the pull-up schemes
of the previous section. Given that the push-down plan
already suffered from a PS2 violation, the resultant plan
would be very inefficient.

The alternative is to discard the split from the plan
shown in Figure 5 and use its input, complete with zom-
bies, in another shared join withT . This, however, exacer-
bates the zombie situation as the zombies that are input to
the join cause even more zombies to be produced. These
tuples will still ultimately be eliminated by the conjuncts
evaluated at the top of the plan. Note that in this situation’s
worst case, the number of zombie tuples, is the product of
the cardinality of the filtered sets of each source. With three
sources, this overhead is cubic.

This situation, i.e. the effects of zombies, can be ame-
liorated by pushing apartial disjunctiondown between the
RS andST join operators, assuming a left-deep strategy
with anRST join order. In this case, this partial disjunc-
tive predicate will be(r1 ∧ s1)∨ (r2 ∧ s2). the plan is as
shown in Figure 8.

Note that this plan still produces zombies after theRS
join operator and still is in violation of PS2. In addition, a
careful examination of this plan, reveals that the predicates
r1, r2, s1 ands2 are each applied three times andt1 andt2
two times. This is a violation of PS1. With more streams
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Figure 8: Eliminate zombies through disjunctions

being joined, the disjunction push-down scheme becomes
increasingly complicated, suggesting that this approach is
not very scalable.

Now suppose further that we are executing the queries
Q5 andQ6 along with the queriesQ3 andQ4. In keeping
with our stated aim to share aggressively without generat-
ing zombies, we need to modify the plan in Figure 8 to pro-
duce the plan shown in Figure 9(a). Clearly the plan gets
increasingly complicated with a lot of work being spent re-
peatedly re-evaluating predicates – the predicates onR and
S are each potentially evaluated four times for a given tu-
ple.

In addition to these violations of precision sharing, ef-
ficient execution of the Split operator is not easy. Recall
that in actuality the Split operator is combined with all the
predicates that are executed immediately after it. These
predicates are built into a query index that the Split con-
sults to route tuples. When the predicates involve more
than one attribute, as is the case here, this index will have
to be multi-dimensional.

In this section we showed how the standard techniques
of shared query processing are not precise. In an attempt
to efficiently reuse common work, they can end up produc-
ing useless data that can be exponential in the number of
streams involved. Not only is the production of such use-
less tuples wasteful, the work done to eliminate them is an
added waste.

4 TULIP: Tuple Lineage in Plans

Based on the observations above, we proposeTULIP: TU-
ple LIneage in Plans, an approach that uses tuple lineage in
static plans to achieve precision sharing.

4.1 A review of imprecise static sharing

We saw in Section 3.3 why disjunctions on intermediate
results can lead to complicated query plans with repeated
predicate re-evaluation. Worse, these predicates evaluated
on intermediate results are disjuncts of conjuncts – e.g.
(r1 ∧ s1) ∨ (r2 ∧ s2) – and more expensive to evaluate
than those that are disjuncts of simple predicates on base
relations. This is especially the case, when the number of
queries is very large. We also saw how the filtered pull-up
approaches can cause join operators to produce zombies,

however early they can be eliminated. We summarize and
then consider in turn each of these problems to guide us to
our solution.

1. PS1 violation in push-down:When identical tuples
reach different upper-level join groups the build and
probe operations on the tuples are duplicated.

2. PS1 violation in filtered pull-up:The issue is that a
predicate evaluation on a tuple, when successful, is
likely to be repeated, potentially many times for com-
plex queries.

3. PS2 violation in pull-up: In both the filtered pull-
up and pull-up strategies, join operators can produce
zombie tuples that have to be subsequently processed
and eliminated.

With problem (1), the only time we can expect push-
down to be competitive is when a very few upper-level
join groups are activated for each base tuple. This obser-
vation was also made in NiagaraCQ [7]. The filtered pull-
up strategies are the best way to reduce these overheads of
repeated work and should be part of our solution.

Problem (2) arises because in static plans we throw away
the results of earlier predicate evaluations. This makes
sense in classical non-shared systems when predicates are
generally conjuncts and the presence of a tuple above a fil-
ter is enough to deduce that the tuple passed every conjunct
of the filter. Why notmemoizethe effect of each predicate
evaluation and reuse it subsequently ?

Problem (3) is again the result of discarding informa-
tion on predicate evaluation. If, for each tuple, the infor-
mation on each predicate evalution is memoized with the
tuple, then a smart join operator can easily avoid producing
zombie tuples.

With this problem analysis we are ready to describe our
solution.

4.2 Tuple Lineage

We now consider the use of “tuple lineage” to accomplish
memoization of predicate evaluation. To date, tuple lineage
has been used profitably only in adaptive query processing
schemes. Our insight is that tuple lineage is more generally
applicable, and is in fact useful in static dataflows.

As described in CACQ, all tuples that flow through the
system carry lineage information that consists of: (1) a
steering vector [1] that describes the operators in the
dataflow that have been visited (done) and are to be vis-
ited (ready) and (2) a completion vector [12] that describes
the queries in the system that are “dead” for this tuple, i.e.,
those that this tuple cannot satisfy. In CACQ, the distinc-
tion between these parts of lineage was blurred while in
truth they have two distinct roles. The steering vector is
entirely used as a tuple routing mechanism. Apart from the
routing infrastructure, such as an Eddy operator, no other
operator must use its contents. In contrast, the completion
vector is a query sharing mechanism, should be entirely
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Figure 9:To precisely share, or not to precisely share

opaque to the routing fabric (the Eddy) and can be used by
the other non-Eddy operators.

The storage and manipulation costs of these vectors rep-
resent a major overhead in the tuple routing schemes. The
completion vectors are particularly profligate in memory
consumption – a bit per tuple per query results in space
overhead that is linear in the product of the number of
queries and currently active tuples. In contrast, when the
queries in question share a lot of their operators, the steer-
ing vector size is much smaller.

4.3 TheTULIP solution

Having defined the notion of tuple lineage, we are ready to
present theTULIP solution. Our main tool is tuple lineage
of which, we only need the “completion vector” part. For
the rest of this paper, we refer to this portion as the “lineage
vector”.

The insight for the solution to Problem (2) is from
Rete [9], a discrimination network for the many pat-
tern/many match problem, the most time-consuming part
of which is the match step. To avoid performing the same
tests repeatedly, the Rete algorithm stores the result of the
match with working memory as temporary state. The lin-
eage vector that tags along each tuple keeps track of the
queries that this tuple has already failed.
Grouped filters: The same idea was also borrowed in
CACQ with a GSFilter that evaluates multiple similar pred-
icates. The GSFilter maintains indexes on the conjunctive
predicate clauses registered with it. When it receives a new
tuple, it efficiently probes the index to identify all regis-
tered clauses that it fails. It then records all these failures
in the tuple’s lineage vector. If, at the end of processing
the tuple, there still are any live queries for the tuple (i.e.,
queries that can still get satisfied) the tuple is sent to the
output. The GSFilter implements the disjunction of the
predicates and memoizes the results of each clause into the
tuple’s payload. All predicates are evaluated exactlyonce.
Note that the GSFilter is doingmorethan what a simple dis-

junction would do. Apart from the disjunction it also sets
up things so that the clauses of the disjunct need never be
re-evaluated. This is not dissimilar to index OR-ing strate-
gies [13] for disjunctive predicates that are used in classical
systems.
Zombie-killing symmetric join: To eliminate the zombies
of problem (3), we need to (a) ensure that tuples go through
grouped filters prior to entering the join and (b) a symmet-
ric join operator that preserves the completion vector of in-
ner tuples when building into an index of the join. When
an outer tuple probes the index and finds a matching inner
tuple, we compute the union of the completion vectors of
the inner and outer. If this union consists of all queries that
these operators are used by, then the match is discarded.
We call this operator azombie-killingsymmetric join.

To summarize,TULIP involves the following compo-
nents:

1. Any appropriate MQO scheme that results in filtered
pull-ups can be chosen to determine join orders.

2. The disjunctions that are pushed down should be re-
placed with GSFilter operators.

3. Using zombie-killing symmetric join operators.

We now put it all together for our driving example, the
scenario that shares queriesQ3,Q4, Q5 andQ6. The static
query plan for theTULIP model is shown in Figure 9(b).
We use three kinds of lineage sensitive operators. TheGSF
is a grouped selection filter, theJoin is a zombie-killing
symmetric join and theOut which is an output operator.
TheOut is similar to that used with the classic static plans
except that it is a single operator that delivers its input tu-
ples to target queries based on their completion vectors. We
now consider the precision sharing properties of this ap-
proach. First, PS1 is satisfied as this plan does not perform
any operation on a given tuple more than once: all predi-
cate evaluations are memoized in the lineage vectors of tu-
ples and since the grouped filters push down disjunctions,
no tuple is processed twice as part of a join operator. Next,



PS2 is also satisfied as no join operators produce zombie
tuples of any kind.

It is instructive to compare this plan with the equiva-
lent traditional shared plan in Figure 9(a). Not only is the
TULIP plan an example of precision sharing, it is easy to
see how the plan for many queries looks very similar to a
plan for a single query. This makes it easy to useTULIP
with multiple queries. In contrast, as we deal with more
queries and streams, the filtered pull-up plan gets increas-
ingly complicated.

Our main insight inTULIP is that the use of lineage
helps: (a) to memoize predicate evaluation and avoid repet-
itive computations,̀a la Rete networks and (b) lineage sen-
sitive operators to recognize and eliminate potential zom-
bie tuples even before they are produced. These uses of
tuple lineage ensure thatTULIP does not respectively vi-
olate properties PS1 and PS2. In fact,TULIP guarantees
precision sharing irrespective of optimizer decisions such
as join order.

It is important to note that there can be many precisely
shared plans, and the optimal plan is not necessarily one
of them. When an optimizer estimates the cost of a plan,
it uses the number of tuples at each stage of the plan to
determine the cost of each operator, in accordance with
the cost model. WithTULIP, a new set of plans that emit
fewer tuples between operators can now be considered dur-
ing plan enumeration. The estimated cost of each operator
is slightly higher because of the overhead of lineage manip-
ulation. The key issue is the expected number of zombies
produced at each stage. If this number can be estimated,
then the optimizer can choose betweenTULIP and other
plans in its pursuit of an optimal solution.

5 Performance ofTULIP
In this section we study the performance ofTULIP, our
static precision sharing approach and compare the static
schemes described in NiagaraCQ. In particular we consider
the filtered pull-up and the selection pushdown schemes.

5.1 Experimental setup

Our experiments were performed on a 2.8 GHz Intel Pen-
tium IV processor with 512 MB of main memory. We
implementedTULIP in the TelegraphCQ [11, 5] system.
Since we have no shared query optimizer, programmati-
cally hook up static plans using the TelegraphCQ operators.

To fairly evaluate the static NiagaraCQ plans, we set up
the system so that no lineage information is stored in in-
termediate tuples and TelegraphCQ’s operators do not per-
form any unnecessary work manipulating lineage. For in-
stance, the disjunctions of filtered pull-up are realized with
a GSFilter that does not set lineage. Similarly, the a sym-
metric join operator ignores lineage. We emphasize here,
that the intermediate data structures in the Niagara mea-
surements haveno space overhead for lineage. The static
plans shown in Section 3 haveSplit operators that are sep-
arate from the predicate filters that follow them, suggest-
ing that each individual predicate is evaluated separately.

However, in our experiments we follow the NiagaraCQ ap-
proach and use a Split operator that probes its input tuples
into a predicate index implemented by a GSFilter. This lets
Split send tuples only to those plan elements of queries that
passed the probe. The top of each plan has oneOutputop-
erator for each query.

In our TULIP implementation, TelegraphCQ’s interme-
diate tuples have lineage turned on.TULIP plans use GS-
Filters, zombie-killing symmetric hash joins, and output
operators that manipulate lineage.

In both implementations, the output operator makes a
tuple available for delivery to a query by queueing it to the
process managing the query’s connection. The queue is
in shared memory, access to which can be expensive. So,
for all of these experiments we suppress output production.
Even so, output processing is still not trivial. For latency
computations, we make a system call to find the current
time for each output tuple. This is still, however, cheaper
than the actual system overheads of sending the same tuple
multiple times through shared memory.

It is important to see where the savings of zombie elimi-
nation come from. In TelegraphCQ, where all the operators
execute in asinglethread of execution in one process, the
cost of operator invocation is minimal - a function call and a
pointer copy. The real savings is the avoidance of unneces-
sary zombie production and elimination. In other systems
where operators are often invoked in different threads, e.g.
Aurora, the savings are even more as fewer zombies leads
to fewer operator invocations that in turn mean less context
switching overheads.

(a) Fewer overlaps (b) Greater overlaps

Figure 10: Experimental setup: Query result sets

select R.a, R.b, S.a, S.b
from R, S
where R.a = S.a AND

R.b > const_0 AND R.b < const_1 AND
S.b > const_2 AND S.b < const_3;

Figure 11: Experimental setup: query template

Our experiments all share a set of queries that are joins
on streamsR and S with individual predicates on each
stream. The queries have identical structure and correspond
to queriesQ3 andQ4 from Section 3.2. The template of
these queries is in Figure 11. We generate 256 queries for
our experiments by supplying values for the constants in
each of the queries in two setups. We show these visually
in Figure 10. As before, shaded areas represent results of
queries and darkly shaded pieces are zombies that would
be generated by selection pull-up. We usedTULIP to log
the number of zombies actually eliminated. This is shown



for both cases in Figure 12.

(a) Fewer overlaps (b) Greater overlaps

Figure 12: Experimental setup: Zombies

In the first setup, shown in Figure 10(a), the result set of
each query overlaps with few other sets. To be precise, each
query’s result set overlaps with that of two other queries.In
this case, as queries are added in the system, more and more
zombies are produced, as shown in Figure 12(a).

Conversely, in the second setup, shown in Figure 10(b),
the result set of each query overlaps with many other sets.
To achieve this, the first two queries are arranged so that
they have almost no overlap (i.e., they are the two queries
farthest apart). Subsequently, every query that is added
overlaps with one or both of the first two queries. Since
each such query contributes no extra zombies, the effect of
adding queries is to steadily reduce the number of zombies
produced, as shown in Figure 12(b).

In our experiments, we measure the average latency of
each of the results of each query. Synthetic data is gener-
ated and piped into TelegraphCQ by an external process.
Each tuple arriving at the system is timestamped on entry
in the TelegraphCQ Wrapper ClearingHouse even before it
is read by any scan operator. When a tuple arrives at an
output operator, we examine its components and compute
the difference between the current time and the time it orig-
inally entered the system. This represents the latency of the
tuple, and the average latency is what we measured in our
experiments.

We consider the 4 static approaches that we studied ear-
lier: (a) selection pull-up (SPU), (b) filtered pull-up (FPU)
(Figure 5), (c) selection push-down (SPD) and (d)TULIP.
In our graphs, we do not report the SPU case as it is dom-
inated by FPU. Plans for selection pull-up and push-down
with predicates on only one source are shown in Figure 3
and the multiple predicate case is just a simple extension.

5.2 Performance results

For each setup, we plot in Figure 13 the average latency
of result tuples for each approach against the number of
queries being shared. Note that the number of queries is
shown in alog2 scale on the x-axis.

In both setups, the average latency for all plans is very
small (under 25ms) for 2 queries and increases steadily as
queries are added. In each approach, there is a certain num-
ber of queries at which there is a knee in the graph showing
each scheme’s scalability limits.

The following overheads affect average latencies:

• PS1 violations:Repeated work for the same tuples in
intersecting result sets:
(SPD) In the various separate join operators.
(FPU) In output processing.

• PS2 violations: (FPU) Unnecessary work caused by
the production of zombies in joins and removal after-
ward.

• Other: (TULIP) CPU instructions for lineage man-
agement. The state overhead was negligible in our ex-
periments.

Setup 1 (Fewer overlaps):
As seen in Figure 13(a), for 32 or fewer queries the be-

havior of all three plans remains similar. Latencies increase
steadily from 6ms to 17ms, while zombies produced by
SPD increase increases from 14 to 9133.

At 64 queries, the latency for FPU jumps to 72 ms while
that of SPD andTULIP stay at 30ms. For twice as many
queries, the number of zombies increased four-fold to≈
39000. FPU’s zombie overheads slow it materially and it
scales no more for 128 and 256 queries. For these query
sets its average latency is 430ms and 43 seconds.

Returning to SPD andTULIP, for more than 64 queries
performance of both approaches start degrading. As
queries are added, each new query causes more tuples that
cannot be easily eliminated before joins.TULIP is, how-
ever, slightly more expensive than SPD and at 256 queries
its latency is 147ms as opposed to SPD’s 125ms.

In general, sharing does not have much advantage when
the results of the queries being shared have fewer overlaps.
This is exactly what we observe in this case and the mini-
mally shared SPD scheme does better overall. The repeated
work overheads in SPD are slightly dominated by that of
lineage management inTULIP. Both are comprehensively
dwarfed by the zombie overheads of FPU.
Setup 2 (Greater overlaps):

As seen in Figure 13(b), all three plans behave similarly
for 4 or fewer queries with latencies≈ 25ms. For 2 queries,
FPU is the outright winner as both queries have no overlap.

From 4 to 32 queries, the performance of FPU and SPD
both degrade very fast. As queries are added, lots of tu-
ples overlap causing repeated work. One instance of this
is in output processing for which SPD and FPU behave
similarly. These new tuples, however, also cause: (1) re-
peated join overheads in SPD and (2) overheads resulting
from zombies in FPU. As zombies decrease from≈ 49000
to plateau at≈ 25000 the former overheads increase and
the latter decrease. From 32 to 64 queries, both SPD and
FPU perform the same. Beyond 64 queries, the join over-
heads of SPD become much worse, leading to SPD having
a latency of 8.02 seconds for 128 queries as opposed to 1.7
seconds for FPU (these are not shown in the graph).

In contrast, theTULIP scheme performs very well,
gracefully degrading in performance as the number of
queries are added. At 256 queries, the latency ofTULIP
is 113ms. The FPU and SPD schemes have a comparable
overhead of 111ms and 102ms for 16 queries. For the same
latency,TULIP scales to 16 times, more than an order of
magnitude, as many queries as traditional schemes.



(a) Fewer overlaps (b) Greater overlaps

Figure 13: Static query plans: average query latencies

Summary: The insights of our performance analysis are as
follows:

1. The overheads of both repeated workandunnecessary
work are significant.

2. Our two setups demonstrate two extreme cases, each
favoring one of the two traditional approaches (FPU
and SPD).

3. In each extreme case, theTULIP solution of precision
sharing performs very well. While in the case of min-
imal sharing it is competitive with the ideal FPU, in
the face of high sharing it is more than an order of
magnitude better than either traditional scheme.

Our experiments demonstrate the robustness ofTULIP.
When sharing is useful,TULIP gives significant improve-
ments over the best known approaches. When, however,
there is not much use in sharing, the extra overheads of
TULIP are minimal. This suggests thatTULIP is capable
of giving very good benefits in many cases while staying
competitive otherwise.

6 Adaptive Precision Sharing
We begin this section by studying tuple routing in the
CACQ adaptive sharing scheme, and then show how it is
also susceptible to violations in precision sharing inspite of
using lineage. Just as we used ideas from the adaptive ap-
proach to make static sharing precise, it turns out that we
can use techniques from the static world to remove the pre-
cision sharing violations from the adaptive approach.

6.1 Tuple routing in CACQ

Here we explain how tuples are routed in an adaptive
dataflow as described in CACQ.

In Figure 14 we show how CACQ will process the
queriesQ3 andQ4 from Section 3.2. Scan modules forR
andS are scheduled to bring data in to the system from
wrappers [11]. The tuples are fed into the eddy, which
adaptively routes the tuples through its slave operators.

Figure 14: CACQ: Eddy, SteMs and Grouped Filter

There are two GSFilters, one each for all predicates over
R andS, and two SteM operators. A SteM is a “state mod-
ule” [15] that can be conceptualized as one half of a de-
coupled symmetric join operator. For e.g., a join operator
R ona S over streamsR andS may be decoupled into two
SteMsR.a andS.a.

In CACQ, a tuple is routed to candidate operators based
on its signature - i.e., the set of base tuples that are its con-
stituents. Operators amongst a set of candidates may be
chosen in any order, with a routing policy governing this
choice. A base tuple fromR has a signaturer and has to be
built andprobedinto theR andS SteMs respectively. For
correctness reasons, however, both SteMs cannot be used
as candidates for tuples with signaturer as that will de-
stroy the atomic “build then probe” property of pipelined
joins. As described in Section 3.3.1 of CACQ [12], “a sin-
gleton tuple must be inserted into all its associated SteMs
before it is routed to any of the other SteMs with which it
needs to be joined”. The system’s constraints force tuples
to be built directly into their associated SteMs right after
they have been scanned.

Thus, in this example, the adaptivity features of CACQ
play no role, as there is only one join to be performed. In
Figure 15 we show the dataflow ofr ands tuples in CACQ
for this example. A base tuple goes throughBuild, GSFil-
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Figure 15: Effective tuple dataflow in CACQ

ter, Probe andOutput operators. Note that anr tuple gets
respectively built and probed in theR andS SteM. Sim-
ilarly an s tuple gets respectively built and probed in the
S andR SteMs. For simplicity, we assume that the pred-
icates in question are not expensive and so CACQ always
orders theGSFilter before aProbe.

Without sharing, in the single query eddy scheme [1] the
steering vector of a tuple indicates when its work is done
and it can be output to a query. With sharing however, any
intermediate tuple in the eddy could satisfy a query, and
checking and delivering tuples to query outputs is part of
the CACQ eddy’s responsibilities.

6.2 Precision sharing violations in CACQ

Now we show how CACQ violates our precision sharing
rules. We are concerned only with sharing and do not ad-
dress any of the considerable benefits that an adaptive sys-
tem may have in volatile scenarios.
Zombie production (PS2 violation): The tuples that are
built into SteMs are the original base tuples and do not con-
tain any record of predicate evaluation, and thus carry no
useful lineage. This, however, means that when produc-
ing the join tuples, there is no way to combine the lineage
of the probe and build to eliminate zombies as described in
Section 4. To see why this is so, recall from Section 4.3 our
description of a zombie-killing symmetric join. To be able
to eliminate matching zombie tuples, the operator needs to
perform the union of the lineage vectors of the outer and
inner tuples. Since, in CACQ, the inner tuples carry no lin-
eage, the join cannot eliminate any zombies and violates
the PS2 property of precision sharing.

Explained in another way, this is a problem of the op-
timal placement of individual selection predicates in the
presence of joins. With a conventional binary join oper-
ator there are the two choices explored by NiagaraCQ and
discussed in Section 3 - pushing the selections down below
the join in “selection push-down” and pulling them above
in “filtered pull-up”. When, however, the internal build and
probe operations of a join are decoupled as shown in Fig-
ure 15 there arethreechoices for locating selection predi-
cates (as disjunctions): after the probe, between the build
and the probe, and before the build. Since, in CACQ, the
build and scan are performed together, there are only two
choices - either between the build and probe, or after the
probe - with the routing policy deciding which wins in an
adaptive fashion. Unfortunately both choices result in the
production of zombies.
Repeated output processing (PS1 violation):

Output processing in CACQ is done every time a tuple
returns to the eddy, i.e., in each major loop. An intermedi-
ate tuple’s steering vector is compared with the completion
requirements of each query. If the tuple satisfies any query
it is immediately delivered. Not only is this an expensive
operation, especially in the presence of a large number of
queries, a given tuple may be processed repeatedly as an
output for multiple queries. This is a violation of the PS1
property. As we saw in Section 5, repeated processing of
the same tuple in the outputs of multiple queries (PS1 vi-
olation) can drastically hurt performance. What we really
need is a way to route tuples to output operatorsonlywhen
they are finally ready for them.

6.3 CAR: Constrained Adaptive Routing

Here, we propose as an alternative to CACQ,Constrained
Adaptive Routing, or CAR. We will show that this scheme
has almost all the adaptivity benefits of CACQ and still sat-
isfies precision sharing.

As explained in Section 6.2 CACQ violates precision
sharing by producing zombies and repeating output pro-
cessing operations. The former is because of a hidden con-
straint (build along with scan) that causes poor selection
placement. The latter is because output processing is per-
formed in an unconstrainedad hocfashion. The root of the
problem is that there are multiple constraints that must be
satisfied in an adaptive dataflow. Some, such asbuild be-
fore probeare for correctness, and others such asfilters be-
fore buildandoutput only when doneare for performance.
In our architecture such constraints can be expressed ex-
plicitly and ensure correctness and performance.

In CAR, we introduce theoperator precedencerouting
mechanism. In this approach, we record precedence re-
lationships between operators in aprecedence graph. As
with CACQ, this mechanism is used to generate a set of
candidate operators to which tuples must be routed. In its
simplest form, this is a graph with nodes that are sets of
operators (called “candidates”) and edges that represent le-
gal transitions from one node to the other. When a tuple is
routed through the candidates of a particular node it is sub-
ject to a routing policy such as the lottery scheme in CACQ.
This ensures thatCAR can adaptively respond to changes
in selectivity, data rates etc.
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Figure 16: Operator precedence graph for CAR

In Figure 16 we show an operator precedence graph for
the queriesQ3 andQ4. There are 8 nodes in the graph and
operators (such as theSteMs andOutputs) appear in more



than one node. Clearly, with this scheme tuples are filtered
and then built intoSteMs. This enables the early recog-
nition and elimination of zombies and preserves the PS2
property. A given tuple is subject to output processing only
once - when it is ready. This preserves the PS1 property.
Effects on adaptivity: Note that fixing predicate place-
ment can hurt adaptivity. In order to reduce zombies, GS-
Filters ought to be processed before builds. If, however,
the filters in question are expensive and cost more than join
operations then reducing zombies may be less important.
Adaptivity in CACQ allowed for efficient join ordering as
well as delayed execution of expensive filters at the cost
of zombies. In contrast, withCAR joins are ordered effi-
ciently without zombies at the cost of early evaluation of
expensive filters. In the presence of a filter that is known
to be expensive, it is easy to fix theCAR precedence graph
to revert to CACQ behavior. An interesting question is if
it is possible to make this choiceadaptively. It is not yet
clear how to devise such a routing policy. In practice, how-
ever, simple filters are very much more common and the
heuristic of reverting to CACQ in the presence of expen-
sive predicates should be enough for most applications.

The main insight of this approach is our use of tech-
niques from the static world. A purely adaptive approach
makes routing decisions every step of the way. Constraints
on the adaptivity makes it possible to ensure that predicate
placement is appropriate for precision sharing.

7 Performance ofCAR and CACQ

In this section we compare the performance of CACQ with
CAR, the constrained adaptive routing technique we de-
scribed above. Our experimental setup and methodology is
identical to that described for static plans in Section 5.

For each of the two setups we report the average laten-
cies of query results for each of CACQ andCAR in Fig-
ures 17(a) and 17(b). Note that as before, the number of
queries is shown in alog2 scale on the x-axis.

As in the static case, for both setups, the average latency
of CACQ andCAR with 2 queries is small (5-30 ms) and
increases steadily with query addition until scalability lim-
its are reached.

The following overheads can affect latencies:

• PS1 violations: (CACQ) Repeated output processing
of the same tuple in different queries.
• PS2 violations: (CACQ) Unnecessary work caused

by the production and removal of zombies.
• Other: (CAR,CACQ) CPU instructions involving lin-

eage management.

In this experiment, for CACQ the tuples produced by
probes into SteMs are immediately ready for output. There
are no more filtering steps and so there are, in fact, no PS1
violations causing output processing overheads.

In both setups, the performance ofCAR comfortably
outstrips that of CACQ. Just likeTULIP, the performance
of CAR gracefully degrades with the addition of new
queries.

In the fewer overlaps case, with 2 queries there are ac-
tually no overlaps. In spite of this, the production of 14
zombies is enough to cause CACQ’s latency to be 21 ms
as opposed to 6ms forCAR. This shows the savings in out-
put processing (PS1 preservation) forCAR. At 256 queries,
the latency ofCAR is≈ 151 ms. An equivalent latency of
CACQ supports only 18 queries. For this latency,CAR
supports 14 times (an order of magnitude) more queries
than CACQ.

In the greater overlaps case, CACQ scales more grace-
fully than with fewer overlaps. Note that in this case,
the relative overheads of zombies actually drop with more
queries. The behavior of CACQ that we observe is really
a dampedversion ofCAR. With 256 queries CACQ has a
latency of 550 ms as opposed to 131 ms ofCAR. Note that
CACQ can support a latency of 131 ms for only 48 queries,
while CAR handles 5 times as many.

The difference in both setups is the number of zombies.
With fewer overlaps, the production of zombies cripples
CACQ.

In comparison to the static schemes,CAR performs al-
most as well asTULIP. With 256 queries, the latency of
CAR in the greater overlap case is 131 ms as opposed to
113 ms forTULIP. In the fewer overlap case it is 151 ms for
CAR as opposed to 147 withTULIP. These results are not
surprising as the only difference betweenCAR andTULIP
is cost of adaptivity. Since there are no choices to be made
in our experiments, the latency differences we observe lets
us reckon the baseline cost of adaptivity.

In summary, our experiments indicate that:

1. The overheads of producing zombies, or unnecessary
work, are significant in adaptive dataflows even when
relatively fewer zombies are produced.

2. In each scheme, theCAR approach of adaptive preci-
sion sharing performs very well.

3. In these scenarios, the baseline costs of adaptivity are
not very significant.

8 Conclusions
Shared query processing has focused on reducing the over-
heads of redundancy. Aggressive reduction of repeated
work can, however, cause additional wasted work in post-
processing useless data.

Thus far, this inherent tension between repeated work
and wasted work has been taken for granted. Our major
contributions are: (1) to show that this tension is not ir-
reconcilable and (2) To develop both static and adaptive
techniques that balance the tension gracefully.

We definedprecision sharingas a way to characterize
any sharing scheme with neither repeated work, nor wasted
work. We then showed how previous work in shared stream
processing led to imprecisely shared plans. Armed with
these observations we charted a strategy to make static
shared plans precise.

Our insight is thattuple lineage, an idea from adap-
tive query processing, is actually more generally applica-
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Figure 17: Adaptive query plans: average query latencies

ble. We then proposedTULIP, or “TUple LIneage in static
Plans”, or technique to make static shared plans precise by
using tuple lineage.

Our next contribution was to show how shared adap-
tive query processors also violate precision sharing. Here
we reversed our strategy, and adopted the idea of operator
ordering in static dataflows. Our new approachCAR, or
“Constrained Adaptive Routing”, has almost all the bene-
fits of adaptivity without the side-effects of precision shar-
ing.

Finally we reported a performance study of the various
schemes: precise and imprecise, static and adaptive. Our
experiments show that the precision sharing approaches ei-
ther significantly outperform, or are competitive with, all
the other schemes under different extreme conditions.
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