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Abstract

In the relational model the order of fetching

data does not a�ect query correctness. This


exibility is exploited in query optimization

by statically reordering data accesses. How-

ever, once a query is optimized, it is executed

in a �xed order in most systems, with the re-

sult that data requests are made in a �xed

order. Only limited forms of runtime reorder-

ing can be provided by low-level device man-

agers. More aggressive reordering strategies

are essential in scenarios where the latency of

access to data objects varies widely and dy-

namically, as in tertiary devices. This paper

presents such a strategy. Our key innovation

is to exploit dynamic reordering to match exe-

cution order to the optimal data fetch order, in

all parts of the plan-tree. To demonstrate the

practicality of our approach and the impact

of our optimizations, we report on a proto-

type implementation based on Postgres. Us-

ing our system, typical I/O cost for queries on

tertiary memory databases is as much as an

order of magnitude smaller than with conven-

tional query processing techniques.

1 Introduction

We investigate new, aggressive reordering strategies

for speeding up queries on relational databases. The

relational data model provides a set-oriented seman-

tics where the order of processing tuples is unimpor-

tant for correctness. For instance, a select query

does not require that the relation be scanned sequen-

tially; there is 
exibility to fetch the data blocks in
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any arbitrary order. Database designers have used

this 
exibility in building multiple access paths to re-

lations, designing multiple methods of processing joins

and optimizing queries based on evaluation of di�erent

methods. However, once a plan is optimized, execu-

tion of the plan proceeds in a �xed manner with the

result that data pages are demanded in a �xed order

that was optimized for a given data layout. The

only form of dynamic reordering available during exe-

cution is through low-level I/O device schedulers or in

some cases by asynchronous prefetching. The reorder-

ing that existing schedulers can achieve is limited to

I/O requests from multiple users or to batch prefetch-

ing from processes doing asynchronous I/O. These ex-

isting schedulers may have greater opportunities for

optimization if prefetching is done in larger batches;

however, prefetching in large amounts can adversely

a�ect caching performance [6]. In this paper, we show

that a e�ective way around this problem is to dynami-

cally reorder execution to match the optimal data fetch

order. If data in some part of the plan tree is \near

by" now and will get \further away" later, it is advan-

tageous to process the \near by" data �rst instead of

waiting for the data \far away". This paper describes

the implementation and evaluation of this simple idea

in practical settings.

The key features of our framework for reordering

execution are:

1. Relations are comprised of chunks that are avail-
able together.

2. Each query plan tree is divided into parts (called

subqueries1 here) that can be executed indepen-

dently in arbitrary order.

3. A scheduling unit collects subqueries from

many users and decides at runtime the order in

which they are executed.

4. A reorderable executor communicates with the

scheduler to process the query plan in the order

dictated by the scheduler.

The scheduling unit (item 3 above) has been de-

scribed in [29]; there we designed an algorithm that

determines the order in which data should be fetched

to reduce I/O cost and presented preliminary results

using simple hand-compiled queries. In contrast, this

paper deals with the design and implementation of

the reorderable executor that can extract the subquery

lists and execute them in an arbitrary order (items 2

and 4).

1The term subqueries is not to be confused with the SQL
notion of subqueries. We use the subqueries to refer to parts of
query.



For easy integration into an existing execution en-

gine, we extended the plan tree data-structure with

three new meta-operators that are added in an extra

phase between optimization and execution of the plan

tree. These operators enable the executor to commu-

nicate and synchronize with the scheduler for ordering

the execution of subqueries.

The last part of this paper reports on a evaluation of

the above ideas for reordering execution in the context

of a tertiary memory database. We also quantify the

overheads of reordering, and show that they are small

compared to the performance gains, which are often

as high as an order of magnitude.

1.1 Applications

Reordering execution can be bene�cial in all cases

where the access latency of data in various parts of the

plan-tree varies widely and dynamically. We present

below a list of potential situations:

� Tertiary memory systems: A typical tertiary

storage device consists of a large number of tapes

or optical disks (we will use the term platter to

refer to both tapes or optical disks), a few read-

write drives and even fewer robot arms to switch

the platter between the shelves and the drives.

The time to load and unload platters from drives

is often high. It is, therefore, bene�cial to order

execution to �rst process data on the currently

loaded unit before unloading it.

� Cache systems: Cached data is \nearer" than

the uncached data and it might help to process

the cached data before fetching more data that

might replace it. Database cache-replacement al-

gorithms [9, 14, 33] are extensively researched but

none of these algorithms have considered applying

execution reordering to adapt to the cached data.

� Broadcast disks for mobile computing: Broad-

cast disks [1, 17, 15] are gaining importance in

mobile and asymmetric environments for reduc-

ing number of messages from the clients to the

data servers. With broadcast disks, data is pe-

riodically transmitted by base stations or servers

to multiple clients instead of clients explicitly re-

questing data from the servers. It will help to

reorder the execution of the clients so that they

process the plan tree in the order in which data

is broadcast by the server instead of following a

�xed order of processing.

1.2 Motivating example

We start with a few examples of potential bene�ts due

to execution reordering on a tertiary memory system.

Consider a single-drive tape jukebox with three re-

lations stored across three tapes as shown in Figure 1.

Relation S is stored as three contiguous chunks on two

tapes, R as three chunks on three di�erent tapes and

T on a single tape. The size of each chunk of R is 1 GB

and of S and T is 0.5 GB each. A 1 GB disk cache is

used for staging data to and from the tertiary memory

in units of 256 KB. Consider the following scenarios:

S2 (0.5 GB)

Tape-2 S1 (0.5 GB)

Tape-1 R1 (1 GB) T (0.5 GB)

S3 (0.5 GB)R2 (1 GB)

R3 (1 GB)Tape-3
single drive

1 GB disk cache

Figure 1: Layout of R, S and T on tape
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Figure 2: The architecture of the tertiary memory

database system with the centralized scheduler

� User-1 submits a sequential scan query on S. The
best order to fetch S is S1, followed by S3 and

then S2. Suppose after user-1 has processed all of

S, user-2 submits a sequential scan on S. In this

case, the best way to process user-2's scan is in

the order S3; S2 and then S1 since S3 and S2 are

still in cache.

� User-1 submits query-1 and after tape-2 has been

loaded to fetch S1, User-2 submits an index scan

on R. In this case, the best order for fetching the

qualifying blocks of R is to �rst fetch R2's blocks,

then R1's and �nally R3's.

In both these cases, we notice that simply changing

the execution order of each user's query based on data

layout is not su�cient when multiple users interact.

The optimal execution order during multi-user pro-

cessing could be quite di�erent from the best static

order. Thus, we need to be able to dynamically re-

order execution.

1.3 Outline of the paper

Section 2 gives an overview of our architecture and

reviews the design of the scheduling unit. Section 3

presents the design of the new executor which extracts

the list of subqueries and executes them in arbitrary

order. Section 4 describes our prototype and presents

a performance evaluation. Section 5 presents related

work. Finally, concluding remarks appear in Section 6.

2 Architecture Overview

Figure 2 sketches the architecture of our tertiary mem-

ory database system introduced in [29]. We assume a

process-per-user architecture where each user-session

has a separate process serving its queries. An arriving

query is �rst compiled by the user process. The user-

process then extracts the list of subqueries from the

query and submits the list to the scheduler process.



We have a single centralized scheduler process that re-

ceives subqueries from all user processes and decides

when they are executed. The scheduler maintains a

set of I/O processes that transfer data between the

disk cache and tertiary memory. As soon as all the

data accessed by a subquery are available in the disk

cache, the scheduler marks the subquery as \ready"

for execution. The user processes contact the sched-

uler to collect ready subqueries and block until some

subqueries are ready. After �nishing execution of these

ready subqueries, they send a noti�cation to the sched-

uler, which can then decide to evict the cached data

used by that subquery when desirable.

Each relation consists of a number of fragments.
A fragment is the part of a relation that lies contigu-

ously on a storage medium. For instance, in Figure 1,

S1, S2 and S3 are fragments of S. The fragments of a

relation correspond to the data chunks of our frame-

work introduced in Section 1 (item 1). We further

restrict the size of each fragment based on the size of

the cache, the latency of access on tertiary memory,

the data transfer rate and the number of concurrent

users as discussed in [29].

The scheduler (1) co-ordinates data movement be-

tween the disk cache and tertiary memory, (2) sched-

ules query execution for each user process, and (3)

decides what data is cached to or evicted from the

disk cache. The scheduler makes these decisions based

on system-wide information about pending subqueries

from all users, the state of the disk cache and the ter-

tiary memory, e.g, what platter is currently loaded.

Details of how these decisions are made is given in

[29]. When deciding on the order of executing sub-

queries, the scheduler's objective is to maximize the

overall system throughput. Hence, for a given user-

process, one or more subqueries could be scheduled for

execution together in an arbitrarily interleaved fashion

with those of other users.

3 Execution Engine

In this section we describe the design of the execu-

tion engine of the user processes. We �rst list the

requirements needed by an execution engine to sup-

port reordering. Then we present the mechanism for

supporting these requirements.

3.1 Speci�cations

1. Submit to the scheduler a list of subqueries to be
executed

The scheduler does not need to know all the de-

tails of the subquery, only which fragments are

needed together in executing the subquery. Con-

sider a nest-loop join between relations R and

S where R has three fragments R1, R2 and R3,

and S has two fragments S1 and S2. The list of

subqueries submitted to the scheduler, called the

SQ-list, is:

f(R1; S1); (R1; S2); (R2; S1); (R2; S2); (R3; S1); (R3; S2)g

2. Execute subqueries out-of-order
There should be no ordering constraints be-
tween the subqueries submitted to the scheduler.

For the two way join example above, the subquery

(R2; S1), for instance, might be scheduled before

the subqueries (R1; S1) and (R1; S2). Thus when
the operators of a plan tree have precedence con-

straints on them, the subqueries must be submit-

ted in multiple stages. For instance, for hash-join

queries the inner fragments have to be fetched and

the hash-table built, before processing any frag-

ments of the outer relation.

3. Execute multiple subqueries together
The scheduler could have more than one subquery

ready for execution. We require that the executor

be able to process multiple subqueries together.

Executing one subquery at a time can lead to re-

dundant computation for joins, since the scans on

the outer relation cannot be shared across multi-

ple fragments of the inner relation. For instance

in the two-way join example, if S1, S2 and R3 are

cached, the scheduler will \ready" both the sub-

queries (R3; S1) and (R3; S2). The executor must

be able to joinR3 with both S1 and S2 in one scan
of R3. Hence, although executing each subquery

separately would allow for easy implementation,

we must provide a means of executing multiple

subqueries together.

3.2 Design

In this section, we describe the design of an executor

that meets the speci�cations of Section 3.1. We base

our discussion on the Postgres execution engine, in

which each query plan is a tree of operators. All opera-

tors are implemented as iterators and support a simple

start-next-end interface. Most relational database sys-

tems have analogous operator-based execution engines

and can be extended similarly [13].

A query is �rst optimized as usual except for a few

minor changes related to sorting via index scans that

are discussed in Section 3.4. The optimized plan tree

is then processed to extract the list of subqueries as

discussed in Section 3.2.1. In Section 3.2.2 we discuss

how execution proceeds out of order.

3.2.1 Extracting subquery lists

This proceeds in two phases: the fragmentation phase

and the extraction phase.

Fragmentation phase: In this phase, each scan

node on each base relation is replaced by a combine
node that contains a list of scan nodes on the fragments

of the base relation. The type of scan (sequential scan

or index scan) on the fragments is the same as on the

base relation. We assume that all the fragments of a

relation have the same set of indices. For example,

in Figure 3(a) we show the plan-tree of a 3-way join

with three sequential scan nodes on base relations S,
U and T . In Figure 3(b) we show the plan-tree after

fragmentation.
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Figure 3: Example of a three-way join. The scan nodes are not shown for clarity; all of them are sequential.

Extraction phase: In this phase we extract the

SQ-lists and insert special nodes called schedule
nodes that are responsible for communicating with

the scheduler and keeping synchronization information

during execution. Each schedule node has an associ-

ated SQ-list. Because of precedence constraints be-

tween operators ( Section 3.1(item 2)), we could have

multiple SQ-lists in a plan-tree. For example, the

plan-tree in Figure 3(b) has ordering constraints be-

tween the hash-build and hash-probe nodes. Hence,

we added a schedule node before the hash-build node

since the hash-build stage has to complete before start-

ing processing on any nodes above it. We add a second

schedule node at the top for the rest of plan-tree.

For inserting such schedule nodes and for construct-

ing the SQ-lists we de�ne a \Find-Sub-Query" call

for each plan-tree node. This call returns the list of

subqueries necessary to process the node. We give be-

low the \Find-Sub-Query" routine for a few common

nodes.

Find-Sub-Query for various nodes

Combine node:

return list of fragments under the combine node

Hash-build, Aggregate or Sort node:

query-list = Find-Sub-Query(subtree under node)

if query-list non-empty

add schedule node with query-list below node

return empty-list

Join node:

listL = Find-Sub-Query (left subtree)

listR = Find-Sub-Query (right subtree)

query-list = cross product of listR and listL

If listR is empty, query-list = listL

If listL is empty, query-list = listR

return query-list

In Figure 3, the \Find-Sub-Query" call on the

Hash-build node adds a schedule node with the list

f(S1); (S2)g and returns the empty-list. The \Find-

Sub-Query" call on the Hash-probe node returns

f(U1)g and on the right branch of the Nest-loop node

returns the list f(T1); (T2)g. The \Find-Sub-Query"

call on the Nest-loop node returns the cross product

f(U1; T1); (U1; T2)g that is stored in a schedule node at

the top of the tree.

3.2.2 Executing queries out-of-order

Our goal during the design of the execution engine

was to follow the normal mode of processing as far

as possible except for occasional communication be-

tween the execution engine and the scheduler for pass-

ing subquery information, collecting ready subqueries

and notifying subquery completion. We show here how

minor modi�cations in the scan nodes and the newly

introduced schedule and combine nodes enable us to

achieve this goal.

For ef-

�ciency reasons (discussed in Section 3.1,item 3) we

want to execute all subqueries of a plan-tree from a

single plan-tree instead of building a separate plan-

tree for each subquery. This requires us to keep track

of what subquery of the plan-tree is currently being

executed. We do so by marking the scan nodes of the

subqueries currently being executed as available and

all other scan-nodes suspended. The plan-tree is then

processed as usual: starting from the root of the plan

tree, successive \next" calls are made to each node of

the tree. When a \next" call is made on a combine

node it submits the \next" call to a scan node under-

neath it that is marked available. A \next" call on

a suspended scan node returns no tuple. Thus, only

scan-nodes of currently scheduled subqueries partici-

pate in execution.

We next discuss how and when the schedule nodes

are used for exchanging subquery information. Note

that there could be multiple schedule nodes in the plan

tree. It is critical to ensure proper interaction between

these nodes to prevent deadlocks during execution by

(1) submitting the SQ-list of a schedule node before

the SQ-list of any schedule node above it and (2)

processing subqueries of one schedule node and noti-

fying the scheduler of their completion before submit-

ting a SQ-list of some other schedule node. We want

all these operations to be seamlessly integrated with

the normal processing of the plan-tree. We achieve

this goal by localizing all communication control into

a \next" call of a schedule node consisting of the fol-

lowing steps:



1. Make a \next" call on the node underneath the

schedule node to get the next tuple, t

2. If t is valid, return t

3. Else, submit the stored SQ-list to the scheduler,

if it has not already been submitted.

4. Inform the scheduler of the completion of the last

batch of scheduled subqueries, if any, and mark

the scan nodes of those subqueries as suspended.

5. Make a blocking call to the scheduler to get the

next collection of subqueries. Let Q be the collec-

tion of \ready" subqueries returned by the sched-

uler.

6. If Q is empty, then all subqueries have been exe-

cuted, therefore return EOF.

7. Else, enable Q for execution by marking all the

scan nodes appearing in Q as available.

8. Finally, make a \next" call on the node under-

neath and return the tuple obtained.

We will illustrate the above steps with the plan-tree

in Figure 3. Initially, all the fragments are marked

suspended. The �rst \next" call results in the sub-

mission of the list f(S1); (S2)g. Assume the scheduler

makes (S2) available �rst. As a result, the hash-build

operation is partially completed. The scheduler is in-

formed of the completion of subquery (S2) (so it can

uncache S2 if needed) and a blocking request is made

to get the next subquery. When the scheduler makes

(S1) ready, the rest of the hash-build operation is com-

pleted and the scheduler is informed of its completion.

Next, the SQ-list f(U1; T1); (U1; T2)g on the topmost

schedule node is submitted. Assume both the sub-

queries are scheduled together. All data required by

the plan-tree is now available. Hence, execution of the

query is completed by pipelining the hash-probe and

nest-loop operations.

The above scheme requires certain caution when

scheduling multiple join subqueries together to avoid

repetition of the following form: Consider the

R ./ S example of Section 3.1. Following

the above scheme we �rst submit the SQ-list

f(R1; S1); (R1; S2); (R2; S1); (R2; S2); (R3; S1); (R3; S2)g
to the scheduler. Suppose the scheduler next

makes (R1; S1) ready, the executor �nishes process-

ing (R1; S1) and asks for the next set of ready sub-

queries. Suppose the next set of scheduled subqueries

is f(R1; S2); (R2; S1); (R2; S2)g. To execute these three
subqueries, scan-nodes of fragments R1, R2, S1 and S2
will be marked available, and the plan-tree will be

processed as usual. But, by doing so, we have repeated
the execution of subquery (R1; S1). To avoid such rep-

etitions, the scheduler keeps track of subqueries al-

ready executed and uses this information for schedul-

ing subqueries.

3.3 Handling Dependencies

Sometimes, it is not possible to know before execution

what subqueries are needed because there is depen-
dency between fragments. To determine what frag-

ments are need, some other fragments have to be pro-

cessed. For example, with index scans, the data blocks

required can be determined only after partial process-

ing on the index trees. Similarly, with tuples pointing

to large objects, the large objects to be fetched can

be determined only after selecting the required tuples.

To handle dependencies, two changes are needed:

1. First, we augment the plan-tree structure further

with a special schedule node called the resolve
node. The resolve node is added during the ex-

traction phase immediately above the plan-tree

node that introduces dependency between frag-

ments. The resolve node, like the schedule node,

contains a list of subqueries (SQ-list) that need

to be executed �rst to resolve the dependencies.

For instance, for an index scan, the resolve node is

added immediately above the corresponding com-

bine node and the SQ-list is the list of index trees

on the indexed fragments. The SQ-list of the

�rst schedule node above this resolve node cannot

be established and hence is marked unresolved.

2. Next, we process nodes that introduce depen-

dency in two stages: in the �rst stage a \Re-

solveDependency" call is made to compute the

dependant list of subqueries and in the second

stage after the subqueries are scheduled the rest

of the node is processed. For instance, for the in-

dex scan node in the \ResolveDependency" stage

the index tree is scanned and the list of matching

TIDs sorted to get the list of blocks that needs to

be fetched. In the second stage, after these blocks

are fetched we complete the rest of index scan.

With these modi�cations we can handle dependen-

cies during execution as follows: when it is time to

process a schedule node, s marked \unresolved", we

make a \resolve-sub-query" call on the node below.

The resolve-sub-query call behaves like the \�nd-sub-

query" call for each node of the plan-tree until a resolve

node is reached. The resolve node submits its stored

SQ-list to the scheduler, and as subqueries from this

list get scheduled, we make ResolveDependency calls

on the node below to get the new SQ-list. The �nal

SQ-list is then returned and execution proceeds as

usual. We will illustrate details of this method with

the three normal cases of dependencies in relational

engines: index scans, joins with index scans on inner

relation and large object access.

Nested loop join with runtime index on the in-
ner relation: We demonstrate how to execute the

hybrid join algorithm [8], which is an improvement

over the standard nest-loop join.

We �rst describe the hybrid join algorithm. It works

in two stages: In the �rst stage, for each tuple of the

outer relation the index of the inner relation is probed

and entries are made in an in-memory join table for
each matched <outer tuple, inner TID> pair (inner

TID refers to the tuple identi�er of the inner relation

that is obtained from the index tree). The join table is

then sorted in storage order of the inner relation TIDs.

In the second stage, the relevant inner relation tuples

are fetched in storage order and merged with the join

table to form the result tuples.
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Figure 4: A plan-tree with dependency. The right-

hand side is the plan-tree after the fragmentation and

extraction phase. The sequential scan nodes on frag-

ments have not been shown for clarity.

We adapt this algorithm to our framework. In the

extraction phase, we add a resolve node above the hy-

brid join node as shown in the example of a four-way

join in Figure 4. The SQ-list of the resolve node is a

cross product of two subquery lists: one from the outer

branch of the join node (f(V1; S1); (V1; S2)g) and the

other from the inner branch (f(IT1)g, the index tree

of T1). The schedule node above this resolve node is

marked unresolved.

During execution, when \resolve-subquery" call

is made to the resolve node, we submit the

stored SQ-list (f((V1; S1); IT1); ((V1; S2); IT1)g) to

the scheduler and wait for \ready" subqueries. When

some set Q of subqueries are \ready", we use the hy-

brid join algorithm to get the list of blocks of the in-

ner fragments. In our example, if ((V1; S1); IT1) is

\ready", we construct the hybrid join table using in-

dex tree, IT1 and notify the scheduler of the comple-

tion of this subquery. Later, when ((V1; S2); IT1) is

\ready", we complete the join table. When all sub-

queries in the SQ-list are executed, we extract the

list of blocks of the inner fragments that needs to be

fetched. This completes the ResolveDependency call

and we return the list to the schedule node above. The

schedule node above the resolve node can then con-

struct its SQ-list and execution proceeds as usual.

In our example, the SQ-list of the schedule node is

f(BL(T1); U1)g where BL(T1) denotes the list of qual-
ifying blocks of T1. When this subquery is scheduled,

the join is completed using the in-memory join table.

The result tuples are pipelined to the Nest-loop join

on U1.

Index scans: Index scans are just a special case of

the above nest-loop joins and can be handled in a sim-

ilar manner.

Large objects: To support reordering between large

object accesses of di�erent tuples, we add a resolve

node after the node that accesses the large objects.

The SQ-list is derived from the plan tree underneath

this node. For example in Figure 5, a restrict clause

on a large object is above the join node between R

R S

Join

Restrict LO

{(R,S)}

Schedule
"unresolved"

Resolve

Figure 5: Adding resolving nodes for large object ac-

cess.

and S. Therefore, the SQ-list f(R;S)g is stored in

the resolve node.

During the resolution phase, we submit the SQ-list

to the scheduler and when the subquery is \ready" a

ResolveDependency call is made to the node accessing

the large object. During this call, the join is com-

pleted and the resultant tuples along with the IDs of

large objects required by them are collected in an in-

memory table (like for the nest-loop join above). The

list of large objects is then returned. The schedule

node submits this collected list to the scheduler. The

scheduler fetches the large objects in an e�cient order.

When a large object is \ready" the corresponding tu-

ple is processed further and the scheduler is noti�ed of

its completion. Cases where whole of the large object

is not needed will require modi�cation of the function

that selects the part to be fetched. The execution of

the function has to be split into two phases, where in

the �rst phase the function selects the blocks of the

large object to be fetched (like in index scans) and in

the second phase the function actually processes the

data.

Dealing with limited memory: If the in-memory

table is larger than the available main memory, then

the resolve node cannot complete the construction of

the entire table in one pass. Thus, the whole re-

solve step cannot be completed in one \resolve-sub-

query" call and multiple passes are required. Each

\resolve-sub-query" call returns only the partial list of

data along with an \incomplete 
ag". The schedule

node above the resolve node executes the partial sub-

query list and submits successive \resolve-sub-query"

call until the entire query is completed.

3.4 Preventing reordering failures

Free reordering of scans does not yield the correct an-

swer when an index scan is used for getting tuples in

sorted order e.g., in a merge join. When sorting order

is important, the optimizer adds a modi�ed combine

node (called merge-combine) above the index-scanned

relation. This modi�ed combine node uses the individ-

ual index scans on fragments to get sorted runs that

are merged together to sort the entire relation. The

\Find-sub-query" call on the merge-combine node is

slightly di�erent than on a normal combine node. For

the merge-combine node, the \Find-sub-query" call re-

sults in the addition of a schedule node containing a



single subquery of all the fragments and their index

trees. Similarly, when accessing large objects, when

the sort-order of tuples is important we cannot reorder

the processing of tuples. In such cases, we limit the

size of the in-memory table to tuples whose results we

can bu�er.

4 Performance evaluation

The architecture described in this paper is imple-

mented on a DEC Alpha AXP workstation running

Digital UNIX (OSF/1 V3.2). It is a modi�cation of

the Postgres [32] database system that was extended

with a multi-threaded scheduler and the I/O process as

described in Section 2. The user processes are the orig-

inal Postgres backends, modi�ed to support the new

nodes and the fragmentation and extraction proce-

dures. The user and I/O processes communicate with

the scheduler using RPCs. The scheduler maintains

as many I/O processes as the number of drives in the

tertiary memory device to allow parallel data trans-

fer from all the drives. To facilitate measurements on

robots which were unavailable, we implemented a ter-

tiary memory device simulator. The simulated device

used a magnetic disk for data storage but serviced I/O

requests with the same approximate delay as an actual

device. This also allowed us to vary critical parameters

like the number of drives, switch time etc for measur-

ing sensitivity of our results to these parameters.

For our experiments, we used a 512 MB local mag-

netic disk drive as a cache. This cache size is arguably

smaller than the cache expected to be used by pro-

duction systems storing terabytes of data on tertiary

memory. However, because of the practical inconve-

nience of loading huge datasets and running multiple

experiments on them, we have scaled down the size

of the cache, the size of the datasets and the num-

ber of concurrent users proportionately. The size of

a storage block was set to 256 KB since this was the

size used by the original Postgres storage manager for

staging data from tertiary memory devices [26]. Each

tuple of a relation consisted of ten integer �elds that

enable selection based on di�erent selectivities (as in

the Set Query Benchmark [25]) and a text �eld that is

used to pad each tuple to a total (internal) size of 300

bytes. We ran a series of experiments to compare the

following three approaches for processing queries:

� NoPrefetch where data is fetched in units of

a storage block (256 KB) on demand and no

prefetching whatsoever is used.

� Prefetch where we use both sequential prefetch

(for sequential scans) and list prefetch (for index

scans). The size of the prefetch unit was set to

32 storage blocks (8 MB), which is used in some

database systems that use prefetching [27].

� Reorder which is our scheme of reordering exe-

cution as described in this paper.

We start with a few anecdotal cases of simple scan

queries (Section 4.1). Often, more useful insights

can be obtained by running particular query instances

tape Magneto-Optical

stacker jukebox

switch time (sec) 30 14

transfer rate(MB/sec) 2 0.5

seek rate (MB/sec) 200 -
seek startup (sec) 2 0.3

number of drives 1 2

platter size (GB) 10 1.3 (both sides)
number of platters 10 32

Table 1: Tertiary Memory Parameters: The switch

time is a summation of the average time needed to

rewind any existing platter, eject it from the drive,

move it from the drive to the shelf, move a new platter

from shelf to drive, load the drive and make it ready

for reading.

 Transfer  Switch  Seek  Rest

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 T
ot

al
 ti

m
e 

in
 m

in
ut

es

 N
oP

re

 P
re

fe

 R
eo

rd

 single-user

 N
oP

re

 P
re

fe

 R
eo

rd

 2-users

 N
oP

re

 P
re

fe

 R
eo

rd

 5-users

Figure 6: Di�erence in total execution time for three

methods (NoPrefetch, Prefetch, Reorder) with

sequential scans. \Rest" refers to the part of the to-

tal query processing time not spent in doing tertiary

memory I/O.

where it is easy to analyze where and why one ap-

proach performs better than the other. Later, we re-

port measurements on a mixed multi-user workloads

(Section 4.2) to evaluate average case performance.

Finally, in Section 4.3 we measure the overhead of

scheduling.

4.1 Simple scan tests

We �rst did a set of experiments on a simulated tape

stacker (Table 1) involving only sequential and index

scans to demonstrate some of the basic cases where

reordering is e�ective. Our objective is to show how

conventional query processing techniques, although ac-

ceptable for single user queries perform badly when

multiple users interact.

The �rst set of experiments are with a single user.

In Figure 6(a) we show the total time taken to pro-



cess the sequential scan with the three schemes: No-

Prefetch,Prefetch and Reorder. We also show

the part of the total time spent in data transfer, plat-

ter switch and seeks on tertiary memory. We note that

the Prefetch and Reorder schemes are 20% better

than NoPrefetch. This is mainly due to I/O-CPU

overlap. The total I/O done is the same in all three

schemes but NoPrefetch does not enable e�ective

overlap between I/O and CPU.

We then let two users run the same scan query, the

second user submitted the query after the �rst one had

scanned just more than 512 MB of the relation. The

total time in all our multi-user experiments is de�ned

as the time between the submission of the �rst query

and the time when the answer to the last query is re-

turned. As shown in Figure 6(b), the total time with

Reorder is one-�fteen ofNoPrefetch and less then

one-half of Prefetch. With Reorder, the second

user started the scan from the remaining part of the

relation instead of the beginning as in the other two

schemes. Thus, both users synchronized their process-

ing perfectly, so that they processed the same data

blocks at the same time. In contrast, with Prefetch

the second user had to re-fetch every data block since

the cache can only hold 512 MB.

We next repeated the query with �ve users to mea-

sure how these results scale. Each user submitted its

query after the �rst one had scanned somewhere be-

tween one-tenth to one-half of the entire relation (se-

lected randomly). In this case, Reorder takes almost

one-�fth the time taken by Prefetch. By synchroniz-

ing the scans of the di�erent users, Reorder not only

makes better use of cached data, it also incurs smaller

seek cost. For Prefetch almost 80% of the total time

is spent in seeks whereas for Reorder the seek cost

is negligible. We expect this trend to continue as we

increase the number of users and stagger their scans

such that simple LRU based cache replacement poli-

cies cannot ensure proper reuse of cached data.

This experiment illustrates how our method of re-

ordering execution can enable better caching perfor-

mance than conventional prefetching schemes. The

next experiment illustrates how we can use execution

reordering to reduce I/O cost even when two queries

are accessing disjoint data.

4.1.1 Index scans

In this experiment, we report the performance of un-

clustered index scans.

We used two 25 GB relations spread across 5 di�er-

ent tapes in units of 5 GB each. The �rst relation was

stored on tapes 1 through 5 and the second on tapes 2

through 6. The fragment size was again 256 MB. The

indices reside on magnetic disk. The selectivity of the

index scan was 0.01%. In Table 2
2
we show the per-

formance of a single-user index scan. NoPrefetch is

2In the conference version of the paper, there was an experi-
mental error in the timings reported in Table 2, column 5 (seek
time and hence total time). This is the corrected table. I would
like to thank Professor David Dewitt for asking questions that
lead me to �nd the mistake.

Total Transfer Switch Seek
(minutes) (minutes) (minutes) (minutes)

Single-user

NoPre 5619 19.4 4010 1527

Pref 297.3 17.5 2.5 276
Reord 297.3 17.5 2.5 276

Two-users

NoPre 12351 38.9 8035 4215

Pref 1339 35 302.5 1000

Reord 586 35 3 548

5-users

NoPre 30171 100 20090 9919
Pref 3144.5 87.5 600 2450

Reord 1467 87.5 6.5 1372

Table 2: Di�erence in total execution time with index

scans.

almost two orders of magnitude worse than the other

two schemes because it does too many random I/Os.

Since the index scan is unclustered, each block access

could result in an I/O request to any of the �ve tapes

of the tertiary memory. This leads to high platter

switch and seek overhead. Schemes Prefetch and

Reorder convert the unclustered I/O to clustered

I/O by pre-scanning the index tree, sorting the quali-

fying TIDs and fetching the data blocks in their stor-

age order. This results in signi�cant reduction in the

number of platter switches and the the seek cost.

Next, two users concurrently submitted the index

scan query on the two relations. The �rst users scan

was on relation 1 that was spread on platters 1 to

5 whereas the second users scan was on relation 2

that was spread on platter 2 to 6 as described ear-

lier. For this case too, NoPrefetch was much worse

than Prefetch and Reorder. In addition, Re-

order performed almost factor of 2.5 times better

than Prefetch. Reorder does much fewer plat-

ter switches than Prefetch because the execution of

user-1 is modi�ed such that �rst both users �nished

processing on the data lying on tapes 2 though 5, then

user-1 scans its part of the relation on tape 1, and �-

nally user-2 scans its part of the relation on tape 6.

Thus, the total number of platter switches is 6. In

contrast, with Prefetch the scans of users 1 and 2

interfered. For instance, in the beginning when user-1

was fetching data from tape 1, user-2 was fetching data

from tape 2. Although each user's scan was clustered

(because of list prefetch), when the two users executed

concurrently with Prefetch, for every prefetch re-

quest a tape switch was incurred. Even if we increase

the size of the prefetch unit, Prefetch will incur at

least four more media switches than Reorder.

We demonstrate how this result for two users scales

over multiple users by running concurrently a collec-

tion of �ve index scans queries on �ve di�erent rela-

tions of 25 GB each. Each relation was spread in units

of 5 GB each across �ve di�erent platters chosen ran-

domly from 1 to 13. Each platter could hold a maxi-

mum of 10 GB. In this case too, the number of platter



Description Default

Workload
# queries per user 5

# users 3

% of 2-way join queries 50
% index scans 80

Index selectivity 0.1-10%

# of relations 10
Relation size 100 MB to 10 GB

(Uniform distribution)

Fragment size � 85 MB ( 1
6
th cache size)

Data layout each relation stored from

1 to 5 platters

Table 3: Experimental setup for mixed workload.

switches incurred is almost two orders of magnitude

more with Prefetch than with Reorder.

This experiment demonstrates that statically re-

ordering index scans reduces random I/O considerably

for single user index scans. But, with multiple users

static reordering is not su�cient for reducing random

I/O. Summarizing, the sequential example showed how

the amount of data transferred can be reduced by do-

ing better scheduling of queries that share data ac-

cesses. The index scan example showed how the num-

ber of platter switches can be reduced by doing better

scheduling of queries that share common platters.

4.2 Multiuser-mixed workload tests

Next, we used a mixed multi-user workload of 2-way

joins and selects to identify conditions where reorder-

ing pays-o� and where it does not by taking mea-

surements under di�erent con�gurations of cache sizes,

number of drives, etc. We also report measurements on

a real HP magneto-optical jukebox (performance char-

acteristics summarized in Table 1) that is connected to

our prototype
3
. Table 3 summarizes the details of ex-

perimental setup.

In Figure 7(a) we plot the total time for this work-

load on the tape-jukebox and the MO-jukebox with

one drive each
4
. On the tape-jukebox, the total time

with Prefetch is about one-�fth of NoPrefetch

while Reorder is one-seventh of Prefetch. On the

MO-jukebox, the total time with Prefetch is about

one-third of NoPrefetch and Reorder is about

one-third of Prefetch. For both NoPrefetch and

Prefetch, the execution time is dominated by I/O on

tertiary memory unlike in our reordering scheme. As

shown in Figure 7(a), the main I/O bottleneck is plat-

ter switches for both NoPrefetch and Prefetch.

Reorder performs better since it greatly reduces the

number of platter switches. For the MO-jukebox the

3Magneto-optical jukeboxes o�er substantially lower price-

performance advantage over tape-jukeboxes, hence they are less
popular in mass storage systems. We, therefore, prefer to do

most of our experiments on tape jukeboxes.
4The one drive MO jukebox also had to be simulated since

we only had a two-drive MO jukebox

platter switch cost is not as high as for the tape-

jukebox. Therefore, we observe smaller relative gains

with Reorder for the MO-jukebox.

Increasing the number of drives: Since the

main bottleneck is platter switches, increasing the

number of drives from 1 to 2 decreases the gap between

the reordering and non-reordering based schemes as

shown in Figure 7(b). For the two-drive case we plot

only the total execution time since it is di�cult to sep-

arately account for the time spent in doing various I/O

activities, example data transfer on one drive might

be overlapped with seeks on another. For Reorder

there was negligible change in execution time when we

increased the number of drives from 1 to 2 since the to-

tal execution time was not bound by tertiary memory

I/O.

In general, if we further increased the number of

drives we can expect this trend to continue. At the

stage where the number of drives is so large that all re-

quired platters are always loaded, the various schemes

will di�er only in the amount of data transfered and

the seek overhead. We observed that in this case, Re-

order performed 25% better than Prefetch for the

tape-jukebox.

We observed that forReorder there was no change

in execution time due to increased number of drives

since the total execution time was not bound by ter-

tiary memory I/O. The performance of NoPrefetch

and Prefetch improve until all required platters are

always loaded. At this stage, the only gain with re-

ordering is through reduction in seek and transfer cost.

Decreasing working set: For the experiments so

far, the transfer cost incurred with all three schemes

was not signi�cantly di�erent. One of the merits of

our query scheduling policies is better reuse of the

cached data. Therefore, we expected to observe sig-

ni�cant reduction in transfer time too with Reorder.

Closer inspection of the workload revealed that there

was very little opportunity for reusing data since the

degree of sharing between the three concurrent users

was limited. Each of the three users picked at most

two of the ten relations in the database with equal

likelihood. Hence there was little chance of overlap

between the component relations of queries running

concurrently. To verify this claim, we repeated the 2-

drive experiments, with �ve users instead of three and

skewed the access requests so that 80% of the accesses

go to 30% of the data. We observed that the transfer

time for Reorder was almost one-half of that with

Prefetch for the skewed dataset (Figure 7(c)).

There experiments demonstrate that reordering is

bene�cial for tertiary memory databases either when

the platter switch or seek costs are high or when the

degree of sharing between queries is large.

4.3 Scheduling overhead

Finally, we measured the overheads of reordering in

our prototype. For the experiments presented ear-

lier, reordering has de�nitely paid o�, whatever be the

scheduling overhead. But an important question is
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Figure 7: Di�erence in total execution time for three methods (NoPrefetch, Prefetch, Reorder) using the

mixed workload. The execution time is normalized by the time taken by scheme NoPrefetch to allow drawing

on the same scale.

how well these bene�ts scale with increasing number

of users or increasing number of fragments. The an-

swer is crucially dependent on the scheduling overhead

that we present next.

We measure the following overheads: (1) The per-

fragment overhead that is directly proportional to the

number of fragments in the query, e.g., the time to

fragment a plan-tree. Measured as a percentage of the

time to scan a cached fragment, this overhead was typ-

ically 0.06% (1.5 milliseconds). (2) the per-subquery

overhead: e.g, the time spent in the extraction phase

or in communicating with the scheduler. Measured as

a fraction of the time spent in processing a two-way

hash-join query on cached data, this overhead was typ-

ically 0.15% (5 milliseconds). (3) the per-session over-

head e.g., time spent by the scheduler in deciding what

subquery to schedule next. Unlike the previous two

overheads this overhead depends on factors like the

number of users concurrently active and the number

of fragments per relation and can only be measured as

a function of these factors. We plot this overhead as

a function of number of users (1 through 9) and total

number of fragments in the database (10 to 100) in

Figure 8. The overhead per subquery increases only

at a rate of 2 millisecond per additional user and less

than 1/4th millisecond per additional fragment. The

total overhead is thus measured to be typically less

than 30 milliseconds per subquery and less than 1% of

the total execution time.

5 Related Work

There are six areas of work that are relevant to the

research presented here: prefetching, page scheduling

for join execution, parallel query scheduling, multiple

query optimization, dynamic query optimization and

batching in OODBs.

Prefetching is useful both in operating systems [6,

19, 28] and database systems [33, 11, 2] especially

when accompanied by execution reordering, e.g., list

prefetch [23, 4, 8] used with index scans. Our system

extends prefetching to entire plan trees and not sim-

ply to index scans. A signi�cant di�erence is that, we

can reorder based on dynamic conditions like cached

data, the state of the I/O device and the data needs of

other queries whereas existing prefetching techniques

reorder execution based on static storage layout.

Page scheduling on page join graphs as discussed

in [24, 22, 20] is an example of reordering two-way

joins queries. However, their methods are speci�c to

join queries and require implementation of new join

algorithms | our method is meant to be a general

scheme for reordering any node of a plan tree. For

parallel [3, 5, 16, 34, 13] and distributed query schedul-

ing [31, 7], plan trees have to be analyzed for es-

tablishing pipelining and ordering dependencies in a

manner somewhat analogous to our subquery extrac-

tion step. However, our method is di�erent in two

ways: �rst, for e�ciency reasons discussed in this pa-

per (Section 3.1), we execute all subqueries from a

single plan-tree whereas most parallel and distributed

systems construct di�erent plan-trees for subqueries to

be scheduled on di�erent processors and second, our

model for communicating and synchronizing with the

scheduler for deciding online the order in which sub-

queries are scheduled places a di�erent set of require-

ments than on these systems.

Our technique is reminiscent of the way multiple

query optimizers combine queries with common subex-

pressions [30]. [21] discusses policies for scheduling a

batch of select and hash-join queries for sharing in-

memory hash-tables. Queries are thus scheduled for

execution in a data-driven manner the way we do.

However, such optimizers typically schedule at whole

relation level and do not consider reordering within a

scan unlike our scheme.

Dynamic query optimization [4, 10] is another tech-

nique that involves plan tree modi�cation at runtime.

However, in contrast to our work, the emphasis in that

area is on choosing dynamically from some �xed set of

execution plans. Once the choice is made, execution

proceeds in a �xed order.

In object oriented databases, the navigational na-

ture of queries can lead to bad I/O performance mak-
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Figure 8: The per-session overhead as a function of the number of users and number of fragments. The y-axes

are overhead in milliseconds per subquery (left) and overhead as a percentage of the total execution time (right).

ing it important to do prefetching [12] and batch-

ing [18]. [18] presents ways of modifying the plan-tree

to replace object-at-a-time references with an assem-

bly operator that collects multiple object references

�rst and then reorders them to optimize I/O accesses.

However the main di�erence between their scheme and

ours is that, they cannot handle reordering across dif-

ferent operators of a plan-tree or across data reference

of di�erent users.

Another concurrent work on modifying query plans

to reorder I/O access on tape is reported in [35]. They

propose a scheme for pre-executing functions that ac-

cess large objects so as to allow I/O requests of di�er-

ent large objects in the same tuple stream and across

multiple users to be reordered. However, they do not

allow the order of proccessing tuples to be modi�ed

unlike in our case.

Summing up, our distinction from related work is

that we propose the �rst system that provides a gen-

eral framework for reordering execution of plan trees

dynamically in an extended relational database sys-

tem.

6 Conclusion

In this paper, we have explored a simple, yet power-

ful, idea of reordering execution to tune to the optimal

data fetch order. Existing methods of query execu-

tion provide but a limited 
exibility of reordering data

fetches during execution. Our proposal is based on the

premise that in a multi-user environment when access

latency of data varies widely, signi�cant performance

advantage can be gained by dynamically reordering

execution.

We proposed a general framework for reordering

all parts of the plan tree. For building a reorder-

able execution engine, we extended the plan tree data-

structure with three new meta-nodes that are added in

an extra phase between optimization and execution of

the plan tree. These operators enable the executor to

communicate and synchronize with the scheduler for

ordering the execution of subqueries. Our changes are

restricted only to these new operators and the extra

phase and thus enable modular extension of existing

execution engines. We extended the Postgres execu-

tion engine and used it for building a prototype of a

tertiary memory database.

Our prototype yields almost factor of three improve-

ment over schemes that use prefetching and almost fac-

tor of twenty improvement over schemes that do not,

even for simple index scan queries. Further experi-

ments demonstrate that either (1) when the platter

switch and seek costs are high, or (2) when the cache

is small and there is overlap between data accesses

of concurrent queries, our reordering scheme will en-

able better scheduling of I/O requests and more e�ec-

tive reuse of cached data than conventional schemes.

The overhead of reordering is measured to be small

compared to the total query execution time (less than

1%). Thus, at least for tertiary memory databases the

penalty of reordering is so negligible that reordering

can almost always be used to advantage.

Our proposed general framework is applicable to

other situations where tuning data to some external or-

der of arrival is important, e.g., a broadcast disk-based

mobile computing client. The data chunks can be de-

termined by the pages broadcast together. The size of

the data chunks is important for limiting the overhead

of reordering. For our prototype, typical overhead per

subquery was 30 milliseconds. Hence, as long as the

processing time per subquery is much larger than this

reordering can be used pro�tably. The scheduling unit

would be responsible for watching the broadcast data

stream, caching relevant data when appropriate and

scheduling ready subqueries for execution.

Future work in the area should consider the impact

of execution reordering on query optimization: execut-

ing queries in parts invalidates some of the assump-

tions and cost functions used by the optimizer. In this

paper, index scans posed one such scenario. There

are other issues speci�c to tertiary memory systems

that need to be addressed: (1) estimating the access

cost when some relations are stored permanently on

disk and others on tertiary memory; (2) including the

size of the disk cache in optimizing queries. When

the disk cache is smaller than the relation, sorting is

no longer an option. Another topic for future work is

providing support for cancelling submitted subqueries

to the scheduler when a restrict or a join node yields

an empty result.
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